BIO-DATA

Name: Dr.G.SUMATHI

Address: Assistant Professor

Department of Mathematics,

Shrimati Indira Gandhi College, Trichirappalli-2

Telephone Number: 9626723666

E mail:b.deepacharan@gmail.com

Qualifications:

- > Ph.D : Shrimati Indira Gandhi College,2016
- > SET: Passed in 2017, Mother Teresa University
- ➤ M.Phil:Bharathidasan University,2001,First class
- ➤ M.Sc: .A.G.Arts and Science College, Musiri, 13th Rank holder, (Bharathidasan University), 1999
- ➤ B.Ed:Tamilnadu University,2011,First class
- ➤ B.Sc: N.K.R Arts and Science College, Namakkal, (University of Madras), 1997, First Class

Teaching Experience:

• Working as Assistant Professor, Department of Mathematics, Shrimathi Indira Gandhi College, Tiruchirappalli since 16.7.2003

Courses Taught:

Graph Theory, Real Analysis, Complex Analysis, Functional Analysis, Operations Research, Numerical Analysis, Vector Calculus and Fourier

series, Complex Analysis, Odinary Differential Equations, Measure theory and Integration and Partial Differential Equations

Research Interest:

Diophantine Equations in Number Theory

Guideship

- ➤ Ph.D Guideship at Bharathidasan University in the year 2018
- ➤ M.Phil Guideship at Bharathidasan University in the year 2016

 No.of Scholars who obtained their M.Phil under my guidance:3

 No.of Scholars who are doing their M.Phil under my guidance:3

 No.of Scholars who are doing their Ph.D under my guidance:2

Book Published:

Published "Special Higher Degree Diophantine Problems with Solutions" in LAP LAMBERT, Academic Publishing

Papers Published:

- 1. Gopalan.M.A.,Sumathi.G., and Vidhyalakshmi.S., *Observations on* $y^2 = 26x^2 + 1$,Bessel J.Math,Vol 4,Issue 1,21-25,2014.
- 2. Gopalan.M.A.,Vidhyalakshmi.S., and Sumathi.G., *Integral points on the hyperbola* $x^2 + 6xy + y^2 + 40x + 80y + 40 = 0$,Bessel J.Math,Vol 2(3),159-164,2012.
- 3. Gopalan.M.A.,Sumathi.G., and Vidhyalakshmi.S., *Observations on the hyperbola* $x^2 = 19y^2 3^t$,Scholar Journal of Engineering and Technology, Vol 2 (2A),152-155,2014.
- 4. Gopalan.M.A.,Sumathi.G., and Vidhyalakshmi,S., On Special families of hyperbola $x^2 = (4k^2 \pm k)y^2 + \alpha^{2t}, \alpha > 1$,The International Journal of Science and Technology,Vol 2,Issue 3,94-97,March 2014.

- 5. Gopalan.M.A., Vidhyalakshmi .S., and Sumathi.G., *Lattice points on the hyperboloid of one sheet* $4z^2 = 2x^2 + 3y^2 4$, Diophantus J. Math, Vol1, No.2,109-115,2012.
- 6. Gopalan.M.A,Vidhyalakshmi.S., and Sumathi.G., *Lattice points on the elliptic paraboloid* $9x^2 + 4y^2 = z$,Advanced in theoretical and Applied Mathematics, Vol7, No.4,379-385,2012.
- 7. Gopalan.M.A.,Vidhyalakshmi.S., and Sumathi.G., *Lattice points on the elliptic paraboloid* $3x^2 + 2y^2 = 3z$,Impact J.Sci.Tech,Vol 7,No.2,41-46,2013.
- 8. Gopalan.M.A., Vidhyalakshmi.S., and Sumathi.G., On the ternary non-homogeneous cubic equation $x^3 + y^3 + z(x^2 + y^2 20) = 4(x + y)^2 z$, Impact J.Sci.Tech, Vol7, No.2,1-6,2013.
- 9. Gopalan, M.A, Vidhyalakshmi.S., Sumathi.G., On the homogeneous cubic equation with three unknowns $x^3 + y^3 = 14z^3 + 3(x + y)$, Discovery Science, Vol.2, No.4. 37-39,2012.
- 10. Gopalan.M.A., Vidhyalakshmi.S., and Sumathi.G., On the homogeneous cubic equation with four unknowns $x^3 + y^3 = 14z^3 3w^2(x + y)$, Discovery Science, Vol 2,No.4,.17-19, 2012.
- 11. Gopalan.M.A.,Sumathi.G.,andVidhyalakshmi.S., *On the homogeneous cubic equation with four unknowns* $x^3 + y^3 = z^3 + w^2(x+y)$, Diophantus J.Math,2(2),99-103,2013.
- 12. Gopalan.M.A.,Sumathi.G., and Vidhyalakshmi.S., *On the cubic equation* with eight unknowns $x^3 + y^3 + z^3 + w^3 = U^3 + V^3 + P^3 + Q^3$,

 Bulletin of Mathematics and statistic research, Vol 1,Isssue 1,23-29,2013.
- 13. Gopalan.M.A., Sumathi.G., and Vidhyalakshmi.S., *Integral solutions*

- of ternary biquadratic non-homogeneous equation $(k+1)(x^2+y^2)-(2k+1)xy=z^4$, Archimedes J.Math, 3(1), 67-71, 2013.
- 14. Gopalan.M.A,Vidhyalakshmi.S., and Sumathi.G., *Integral solutions of ternary biquadratic non-homogeneous equation* $(\alpha+1)(x^2+y^2)+(2\alpha+1)xy=z^4$, JARCE Vol (6),No.2,97-98,July-Dec 2012.
- 15. Gopalan.M.A., Vidhyalakshmi.S., and Sumathi.G., *Integral solutions of ternary biquadratic non-homogeneous equation* $(2k+1)(x^2+y^2+xy)=z^4$, Indian Journal of Engineering, Vol1, No1, 37-40, 2012.
- 16. Gopalan.M.A., Sumathi.G., and Vidhyalakshmi.S., *On the ternary biquadratic non-homogeneous equation* $x^2 + ny^3 = z^4$, Cayley J.math, Vol 2,Issue 2,169-174,2013.
- 17. Gopalan.M.A., Sumathi.G., and Vidhyalakshmi.S., *Integral solution non-homogeneous biquadratic equation with four unknowns* $(x^3 + y^3) = (k^2 + 3)^n z^3 w$, International Journal of Computational Engineering Research, Vol 3, Issue 4,51-56,2013.
- 18. Gopalan, M.A., Sumathi.G., and Vidhyalakshmi.S., *Lattice points of non-homogeneous biquadratic equation with four unknowns* $(x^4 y^4) = 3z(x^3 + y^3) + w$, International Journal of Latest Research in Science & Technology, Vol 2, Issue 1,502-504,2012.
- 19. Gopalan.M.A., Sumathi.G., and Vidhyalakshmi.S., *Integral solutions of homogeneous biquadratic equation with four unknowns* $(x^4 y^4) = 2^{2n} z^3 w$, International Journal of pure and Applied Mathematical Sciences, Vol 6, No 3, 219-224, 2013.
- 20. Gopalan.M.A., Sumathi.G., and Vidhyalakshmi.S., *Integral solutions of non-homogeneous quintic equation with three unknowns* $x^2 + y^2 xy + x + y + 1 = (k^2 + 3)^n z^5$, International Journal of Innovative

- Research in Science, Engineering and Technology, Vol 2, Issue 4,920-925, April 2013.
- 21. Gopalan.M.A., Sumathi.G., and Vidhyalakshmi.S., *Integral solutions of the non-homogeneous ternary quintic equation in terms of pell sequence equation* $x^3 + y^3 + xy(x+y) = 2z^5$, International Journal of Applied Mathematical Sciences, Vol6, No.1,59-62,2013.
- 22. Gopalan.M.A.,Vidhyalakshmi.S., and Sumathi.G., *Integral solutions of the non-homogeneous quintic equation with four unknowns* $x^5 y^5 + (x^4 + y^4)z + 52w^4z = 4z(1+7w^2)$, Bessel J.Math,Vol 3(1),175-180,2013.
- 23. Gopalan.M.A,Sumathi,.G. and Vidhyalakshmi.S., *On the non-homogeneous quintic equation with five unknowns* $x^3 + y^3 = z^3 + w^3 + 6T^5$,International Journal of Management, IT and Engineering, Vol 3,Issue 4,501-506,2013.
- 24. Gopalan.M.A.,Sumathi.G.,and Vidhyalakshmi.S., *Integral Solutions of non homogeneous sextic equation with four unknowns* $x^4 + y^4 + 16z^4 = 32w^6$,Antarctica J.Math, 10(6), 623-629,2013.
- 25. Gopalan.M.A.,Sumathi.G., and Vidhyalakshmi.S., *Integral Solutions of* $x^6 y^6 = 4z(x^4 + y^4 + 4(w^2 + 2)^2)$ in terms of Generalized Fibonacci and Lucas Sequences, Diophantous J.Math, 2(2), 71-75, 2013.
- 26. Gopalan.M.A.,Sumathi. G., and Vidhyalakshmi. S., *Integral solutions of sextic non homogeneous equation with five unknowns* $x^3 + y^3 = z^3 + w^3 + 6(x + y)t^5$, Vol1,Issue2,146-150,2013.
- 27. Gopalan.M.A., Sumathi.G., and Vidhyalakshmi.S., On the heptic non-homogeneous equation with four unknowns $xy(x+y) + 2zw^6 = 0$,

- International Journal of Engineering Sciences and Research technology ,2(5),1113-1117 ,May 2013.
- 28. Gopalan.M.A.,Sumathi,.G. and Vidhyalakshmi.S., *On the non-homogeneous octic equations with five unknowns* $(x^2 + y^2)(x + y)^4 = z^4w^3$,International Journal of Engineering Research Online, Vol 1,Issue 2,252-255,2013.
- 29. Gopalan.M.A,Sumathi.G., and Vidhyalakshmi.S., *On the non-homogeneous octic equations with five unknowns* $(x^4 y^4) = T^6(z^2 w^2)$, Scholar Journal of Physics,mathematics and Staistics, Vol 1,Issue 2,84-87,2014.
- 30. Gopalan.M.A., Sumathi.G., and Vidhyalakshmi.S., *Gaussian Integer* solutions of homogeneous quadratic equation with four unknowns $x^2 + y^2 = 3z^2 + w^2$, International Archieve of Applied Science and Technology, Vol 4(3),58-61,2013.
- 31. Gopalan.M.A., Sumathi.G., and Vidhyalakshmi.S., *Gaussian integer* solutions sextic equation with four unknowns $x^6 y^6 = 4z(x^4 + y^4 + w^4)$, Archimedes J.Math, 3(3), 263-266, 2013.
- 32. Gopalan.M.A.,Sumathi.G., and Vidhyalakshmi.S., *On the transcendental* equation with five unknowns $3\sqrt[3]{x^2 + y^2} 2\sqrt[4]{X^2 + Y^2} = (r^2 + s^2)z^6$,Global Journal of Mathematics and Mathematical Sciences,Vol 3,No 2,63-66,2013.
- 33. Gopalan.M.A., Vidhyalakshmi.S., and Sumathi.G., *On the surd-transcendental equation with five unknowns* $\sqrt[4]{x^2 + y^2} + \sqrt[2]{z^2 + w^2} = (k^2 + 1)^{2n} R^5$, International Organization of Scientific Research, Vol 7, Issue 4, 78-81,2013.

- 34. Gopalan.M.A., Sumathi.G., and Vidhyalakshmi.S., *On the transcendental* equation with six unknowns $2\sqrt[2]{x^2 + y^2 xy} \sqrt[3]{X^2 + Y^2} = \sqrt[2]{z^2 + 2w^2}$, Cayley Journal of Mathematics, 2(2),119-130,2013.
- 35. Gopalan.M.A., Vidhyalakshmi.S., and Sumathi.G., *On the exponential diophantine equations* $x^x y^{y^n} = z^{z^n}, x^{x^n} y^{y^m} = z^{z^n}$, International Journal of Modern Engineering Research, Vol 3, Issue 6,3466-3468,2013.
- 36. Gopalan.M.A., Sumathi.G., and Vidhyalakshmi.S., *Diophantine Quadruple involving Jacobsthal lucas number and Thabit-ibn-kurrah number with the Property D*(1),International Journal of Innovative Research and Review,Vol 2(2),47-50,2014.
- 37. Gopalan.M.A., Sumathi.G., and Vidhyalakshmi.S., *Special* $D(k^2 + 1)$ *Dio-Quadruple Involving Jacobsthal Lucas and Thabit-ibn-kurrah numbers*, International Journal of Mathematics Trends and Technology, Vol 11, No. 2, 77-80, July 2014.
- 38. Gopalan.M.A., Sumathi.G., and Vidhyalakshmi.S., *Special Dio-quadruple* involving jacobsthal and Jacobsthal lucas number with the Property $D(k^2+1)$, International J. of .Math.Sci and Engg.Appls Vol 8 NoIII, 221-225,2014.
- 39. G.Sumathi'Integral Solutions of Homogeneous Biquadratic Equations with Five Unknowns $2(x^4 y^4) = (z^2 w^2)P^2$, Journal of mathematics and Informatics, Vol 11,39-45,2017
- 40. G.Sumathi "On the homogeneous Cubic Equation With Four Unknowns $(x^3 + y^3) = 7zw^2$, Journal of mathematics and Informatics, Vol 11,29-37,201.
- 41. G.Sumathi "Integral Points on the cone" $7x^2 3y^2 = 16z^2$, Journal of mathematics and Informatics, Vol 11, 47-54, 2017

- 42. G.Sumathi "Observations on the hyberbola" $y^2 = 182x^2 + 14$, Journal of mathematics and Informatics, Vol 11,73-81,2017
- 43. Dr.G.Sumathi"Observations on the Pell Equation $y^2 = 14x^2 + 4$ "

 International Journal Of Creative Research Thoughts, Vol 6, Issue 1,

 Pp1074-1084, March 2018
- 44. Dr.G.Sumathi"Observations on the Equation $y^2 = 312x^2 + 1$ " International Journal Of Mathematics Trends and Technology, Vol50,, Issue4, 31-34, Oct 2017
- 45. Dr.G.Sumathi"On the Non-Homogeneous quintic Equation With Three Unknowns $5(x^2 + y^2) 9xy + 2(x + y) + 4 = (k^2 + 19s^2)^n z^5$ " International Journal OfEmerging Technologies and Innovative Research, Vol 5, Issue 3, Pp 1101-1104, March 2018
- 46. Dr.G.Sumathi "Observations on the hyberbola $y^2 = 150x^2 + 16$ " Intenational Journal Of recent Trends in Engineering and Research, Vol 3, Issue 9, Pp 198-206, sep 2017
- 47. Sumathi.G., and Vidhyalakshmi.S., On the homogeneous equation of eighth degree with five unknowns $(x+y+z)^8 = (x+y)^4(w^2-wT+T^2)^2$, accepted in UNIETS
- 48. Dr.G.Sumathi "Integral Points on the Ternary Quadratic Diophantine Equation $y^2 = 33x^2 + 4^t$ " Intenational Journal for research in Applied Sciences and Engineering Technology ,vol 7,Issue III,Pg No . 305-313,March 2019
- 49. Dr.G.Sumathi"Observations on the hyberbola $y^2 = 14x^2 + 16^t$ " Intenational Journal for research in Applied Sciences and Engineering Technology ,vol 7,Issue III,Pg No 314-321,March 2019

- 50. Dr.G.Sumathi"Integral Solutions of the Diophantine Equation $y^2 = 20x^2 + 4$ "

 Intenational Research Journal of Engineering and Technology, Vol 6, Issue 3, Pg no 1566-1571, March 2019
- 51. Dr.G.Sumathi"On the Binary Quadratic Diophantine Equation $y^2 = 272x^2 + 16$ " Intenational Research Journal of Engineering and Technology, Vol 6, Issue 3, Pg no 1587-1593, March 2019
- 52. Dr.G.Sumathi "Observations on the Binary Quadratic Diophantine Equation $y^2 = 105x^2 + 4^t$, $t \ge 0$ " Intenational Journal for research in Applied Sciences and Engineering Technology ,vol 7,Issue III,Pg No951-959,March 2019

WORKSHOPS, CONFERENCES AND SEMINARS ATTENDED

- 1. Participated in the Two Day National Level Workshop on "NAAC Awareness Programme" conducted on 27th and 28th July 2019 at Primax Seminar Hall, Nagadevanahalli, Bengaluru-56, Karnataka, Jointly organized by Primax Foundation, In association with Shrimati Indira Gandhi College-Trichy, INIMS Degree College, Bengaluru, and Arunodaya College, Bengaluru.
- 2. Attended the Scilab Workshop on 4 th May 2019, organized by National Institute Of Technology, Trichy.
- 3. Presented a Paper " *On the non-homogeneous quintic equation with five unknowns* $3(x^2 + y^2) 5xy + x + y + 1 + w^2 z^2 = (k^2 + 11s^2)^{2n}t^5$ " in International Conference on Mathematical Methods and Computation, Jamal Mohamed College, Trichy-24, Jamal Academic Research Journal, 302-305, Jan 2015.
- 4. Presented a Paper "On the non-homogeneous sextic equation with five unknowns $y^4 x^4 + w(x^3 + y^3) = (k^2 + 11s^2)^n z^5 t$ " in International

Conference on Mathematical Methods and Computation, Jamal Mohamed College, Trichy-24, Jamal Academic Research Journal, 227-230, Feb 2014.

5. Attended UGC Sponsored Orientation Course from 09-11-2005 to 06-12-2005 at UGC- Academic Staff College, Bharathidasan University, Trichy-23.