ORDINARY DIFFERENTIAL EQUATIONS

Class: I M.Sc Maths

Subject: Ordinary Differential Equations

Subject Code: P22MACC13

Dr. S. Sumithiradevi Assistant Professor Department of Mathematics Shrimati Indira Gandhi College Trichy.

Linear Equations with constant coefficients

Differential Equation:

A differential equation is an equation which contains derivatives of one or more depended variables with respect to one or more independent variables.

Example:

- dy/dx = m
- $\bullet \partial^2 y/\partial x^2 + \partial^2 y/\partial z^2 = 2xy$

Types of differential Equations:

Differential equations are classified as follows:

- Ordinary Differential Equation
- Partial Differential Equation

Ordinary Differential Equation:

A differential equation which involves only one independent variable.

Example:

$$dy/dx = m$$

Partial Differential Equation:

A differential equation which involves partial differential coefficient with respect to two or more independent variables

Example:

$$\partial^2 y/\partial x^2 + \partial^2 y/\partial z^2 = 2xy$$

Order and Degree of differential equation:

- The order of the highest order derivative occurred.
- The degree of the highest order derivative occurred.

Example:

$$(d^4y/dx^4)^2 + (dy/dx)^4 = e^x$$

- Order: 4
- Degree: 2

Linear differential equation:

A differential equation is said to be linear if the independent variable and its differential coefficients occur only in the first degree, and no product of dependent variable and/or is differential coefficient occur in the equation.

Non-Linear differential equation:

A differential equation which is not linear is called non-linear differential equation.

A linear differential equation of order n with constant coefficient is an equation of the form

$$a_0y^{(n)} + a_1y^{(n-1)} + \dots + a_ny = b(x),$$

where $a_0 \neq 0$, a_1 , a_2 ,, a_n are complex constants and b is complex valued function on an interval I: a < x < b.

The operator L defined by

$$L(\phi)(x) = \phi^{(n)}(x) + a_1 \phi^{(n-1)}(x) + a_2 \phi^{(n-2)}(x) + \ldots + a_n \phi(x)$$

is called as differential operator of order n with constant coefficients.

The equation L(y) = b(x) is called non-homogenous equation. If b(x) = 0 for all x in I the corresponding equation L(y) = 0 is called a homogenous equation.

Initial Value Problems for Second Order Equations

We concerned with the equation $L(y) = y'' + a_1y' + a_2y = 0$ where a_1 and a_2 are constants.

Theorem:1

Let a_1 , a_2 be constants and consider the equation $L(y) = y'' + a_1y' + a_2y = 0$

- 1. If r_1, r_2 are distinct roots of the characteristic polynomial $p(r) = r^2 + a_1 r + a_2$ Then the functions $\phi_1(x) = e_1^{r_1 x}$ and $\phi_2(x) = e_2^{r_2 x}$ are solutions of L(y) = 0.
- 2. If r_1 is a repeated root of the characteristic polynomial p(r), the function $\phi_1(x) = e_1^{r_1 x}$ and $\phi_2(x) = e_2^{r_2 x}$ are solutions of L(y) = 0.

Proof:

Let
$$\phi(x) = e^{rx}$$
 be a solutions of $L(y) = 0$.

$$L(e^{rx)} = (e^{rx)''} + a_1(e^{rx)'} + a_2(e^{rx)}$$
$$= (r^2 + a_1r + a_2) (e^{rx})$$

$$L((e^{rx}) = 0 \text{ iff } p(r) = r^2 + a_1 r + a_2 = 0.$$

- 1. If r_1 and r_2 are distinct roots of p(r) then $L(e_1^{r_1x}) = L(e_2^{r_2x}) = 0$ and $\phi_1(x) = e_1^{r_1x}$ and $\phi_2(x) = e_2^{r_2x}$ are solutions of L(y) = 0.
- 2. If r_1 is a repeated root of p(r), then

$$P(r) = (r - r_1)^2$$
 and $P'(r) = 2(r - r_1)$

 $L(e^{rx}) = P(r)e^{rx}$ for all r and x.

$$\partial/\partial r L(e^{rx}) = \partial/\partial r [P(r)e^{rx}]$$

which implies $L(xe^{rx}) = [P'(r) + xP(r)]e^{rx}$

at
$$r = r_1$$
, $P(r_1) = P'(r_1) = 0$

ie) L $(xe_1^{r_1}) = 0$ thus, showing that $x e_1^{r_1}$ is a solution of L(y) = 0.

Thus, if r_1 is a repeated root of the characteristic polynomial P(r), then $\phi_1(x) = e_1^{r_1 x}$ and $\phi_2(x) = e_2^{r_2 x}$ are solutions of L(y) = 0.

THEOREM:2

= 0

 $= C_1 L(\phi_1) + C_2 L(\phi_2)$

If ϕ_1 and ϕ_2 are two solution of L(y) = 0 then $C_1 \phi_1 + C_2 \phi_2$ is also a solution of L(y) = 0, where C_1 and C_2 are any two constants.

PROOF:

Let
$$\phi_1$$
 and ϕ_2 be two solutions of $L(y) = 0$
 $L(\phi_1) = \phi_1^{"} + a_1 \phi_1^{'} + a_2 \phi_1 = 0$
 $L(\phi_2) = \phi_2^{"} + a_1 \phi_2^{'} + a_2 \phi_2^{'} = 0$
Suppose C_1 and C_2 are any two constants then the function ϕ defined by $\phi = C_1 \phi_1 + C_2 \phi_2^{'}$ is a solution of $L(y) = 0$
 $L(\phi) = (a \phi_1^{'} + C_2^{'} \phi_2^{'})^{"} + a_1(a \phi_1 + C_2^{'} \phi_2^{'}) + a_2(a \phi_1^{'} + C_2^{'} \phi_2^{'})$
 $= C_1(\phi_1^{'} + a_1^{'} \phi_1^{'} + a_2^{'} \phi_1^{'}) + C_1(\phi_2^{'} + a_1^{'} \phi_2^{'} + a_2^{'} \phi_2^{'})$

The function ϕ which is zero for all x is also a solution called the trivial solution of L(y) = 0.

The results of above two theorems allow us to solve all homogeneous linear second Order differential equations with constant coefficients.

Definition:

An initial value problem L(y) = 0 is a problem of finding a solution ϕ satisfying $\phi(x_0) = \alpha_0$ and $\phi'(x_0) = \beta_0$ where x_0 is some real number α_0 , β_0 are given constants.

Theorem: 3 (Existence Theorem)

For any real x_0 and constants α , β there exists a solution ϕ of the initial value problem $L(y) = y'' + a_1 y' + a_2 y = 0$, $y(x_0) = \alpha$, $y'(x_0) \beta$, $-\infty < x < \infty$.

Proof:

By theorem 1, there exist two solutions ϕ_1 and ϕ_2 that satisfy $L(\phi_1) = L(\phi_2) = 0$. From theorem 2, we know that $C_1 \phi_1 + C_2 \phi_2$ is a solution of L(y) = 0. We show that there are unique constants C_1 , C_2 such that $\phi = C_1 \phi_1 + C_2 \phi_2$ satisfies $\phi(x_0) = \alpha$ and $\phi'(x_0) = \beta$.

$$\begin{aligned} \phi(x_0) &= C_1 \phi_1(x_0) + C_2 \phi_2(x_0) = \alpha \\ \phi'(x_0) &= C_1 \phi'_1(x_0) + C_2 \phi'_2(x_0) = \beta \end{aligned}$$

Above system of equations will have a unique solution C_1 , C_2 if the determinant

$$\Delta = \begin{vmatrix} \phi_1(x_0) & \phi_2(x_0) \\ \phi'_1(x_0) & \phi'_2(x_0) \end{vmatrix}$$

$$= \phi_1(x_0) \phi'_2(x_0) - \phi_2(x_0) \phi'_1(x_0) \neq 0$$

By theorem 1, (1) $\phi_1(x) = e_1^{r_1 x}$ and $\phi_2(x) = e_2^{r_2 x}$ are two solution of L(y) = 0 for $r_1 \neq r_2$ and

$$\Delta = e_{1\ 0}^{r\ x} r_2 e_{2\ 0}^{r\ x} - e_{2\ 0}^{r\ x} r_1 e_{1\ 0}^{r\ x}$$
$$= (r_2 - r_1) e_{1\ 2\ 0}^{(r\ +r\)x} \neq 0$$

By theorem1,(2) $\phi_1(x) = e_1^{r_1 x}$ and $\phi_2(x) = e_2^{r_2 x}$ are two solution of L(y) = 0 and

$$\Delta = e_{1\ 0}^{r\ x} \left[e_{1\ 0}^{r\ x} + x_0 r_1 e_{1\ 0}^{r\ x} \right] - x_0 e_{1\ 0}^{r\ x} r_1 e_{1\ 0}^{r\ x}$$
$$= e_{1\ 0}^{2r\ x} \neq 0$$

Thus , the determinant condition is satisfied in both the cases. Therefore C_1 , C_2 are uniquely determined. The function $\phi = C_1 \phi_1 + C_2 \phi_2$ is desired solution of the initial value problem.

Fumalistacioni com