
SHRIMATI INDIRA GANDHI COLLEGE

(NATIONALLY ACCREDITED AT “A” GRADE (3RDCYCLE) BY NAAC)

TIRUCHIRAPPALLI-2

TUTORIAL MATERIAL

OOAD AND UML

 DEPARTMENT OF COMPUTER SCIENCE

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 2

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 3

S.No. Topic Page. No.

1 SSADM
5-7

2 VARIOUS OBJECT ORIENTED

METHODOLOGIES

8-15

3 SYSTEMS DEVELOPMENT LIFECYCLE
16-20

4 RELATIOPNSHIPS IN THE UML
21-27

5 BUILDING BLOCKS OF UML 35-39

6 UML DIAGRAMS 40-50

7 UNIFIED APPROACH
51-63

8

OBJECT – ORIENTED ANALYSIS USE CASE

DRIVEN

64-78

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 4

OOAD AND UML

UNIT I
Structured approach to system construction: SSADM/SADT - An overview
of object oriented systems development & Life cycle.

UNIT II
Various object oriented methodologies – Introduction to UML.

UNIT III
Object oriented analysis – Use cases- Object classification, relationships,
attributes, methods.

UNIT IV
Object oriented design – Design axioms – Designing classes – Layering the
Software design: - data access layer, User interface layer, Control/business
Logic layer.

UNIT - V
UML - Examples on: Behavioral models – Structural models – Architectural
Models from real world problems.

Text Books:
1. Bahrami Ali, Object oriented systems development, Irwin McGraw Hill,
2005 (First 4 units covered here).
2. Booch Grady, Rumbaugh James, Jacobson Ivar, The Unified modeling
language – User Guide, Pearson education, 2006 (ISBN 81-7758-372-7)
(UNIT -5 covered here).

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 5

 OOAD & UML

SSADM(Structured System Analysis and Design Method)

 The SSADM methodology is a well-defined (structured) methodology
and is quite difficult to use.

 When used skillfully it can produce well-documented, accurate
information systems.

 It recognizes the following stages in the systems development lifecycle.
 It concentrates on the analysis and design phase of the Waterfall Model

of the Systems

The objectives of SSADM

 Improve the project management and control.
 Make more effective use of experienced and inexperienced

development staff.
 Develop better quality system.
 Enable projects to be supported by computer based tools such as

computer aided software engineering system.
 Establish a framework for good communication between participents in

a project.

Stages in SSADM:

SSADM is composed of seven stages within a project's life cycle, and
at the end of each stage the analyst and users can decide whether to move on
to the next level, abandon the project, or revise one or more stages.

Stage 0: Feasibility

 The Feasibility stage is a short assessment of a proposed information
system to determine if the system can meet the business requirements of

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 6

an organization, assuming the business case exists for developing the
system.

 The analyst considers possible problems faced by the organization and
produces various options to resolve these issues.

Stage 1: Investigation of the Current Environment

 Detailed requirements are collected and business models are built in the
Investigation of the Current Environment stage.

 This stage is where you develop a business-activity model, investigate and
define requirements, investigate current processing in the data flow model,
investigate current data and derive the logical view of current services.

Stage 2: Business System Options

 The Business Systems Options, or BSO, stage allows the analyst and you
to choose between a number of business-system options that each describe
the scope and functionality provided by a particular development and
implementation approach.

 After you present these to management, the management then decides
which BSO is the better option.

Stage 3: Definition of Requirements

 This stage specifies the details in the processing and data requirements of
the selected BSO option.

 In this stage you define the required system processing, develop the
required data model, determine the systems for existing or new functions,
develop the user job specifications, enhance the required data model,
develop specific prototypes and confirm the system objectives.

Stage 4: Technical Systems Options

 This stage allows you and the analyst to consider the technical options.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 7

 Details such as the terms of cost, performance and impact on the
organization is determined.

 We identify, define and select the possible technical system option in this
stage.

Stage 5: Logical Design

 This stage involves you specifying the new system through designing the
menu structure and dialogues of the required system.

 The steps in this stage include defining the user dialogue, defining update
processes and defining the inquiry processes.

Stage 6: Physical Design

 This is the implementation phase of SSADM.
 The Physical Design stage is used to specify the physical data and process

design use the language and features of the chosen environment and
incorporate installation standards.

 This stage concentrates on the environment in which the new system will
be running.

SSADM uses a combination of three techniques:

 Logical Data Modeling -- the process of identifying, modeling and
documenting the data requirements of the system being designed. The data
is separated into entities (things about which a business needs to record
information) and relationships (the associations between the entities.

 Data Flow Modeling -- the process of identifying, modeling and
documenting how data moves around an information system. Data Flow
Modeling examines processes (activities that transform data from one
form to another),data stores (the holding areas for data), external
entities (what sends data into a system or receives data from a system,
and data flows (routes by which data can flow).

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 8

 Entity Behavior Modeling -- the process of identifying, modeling and

documenting the events that affect each entity and the sequence in
which these events occur. Each of these three system models provides a
different viewpoint of the same system, and each viewpoint is required to
form a complete model of the system being designed. The three techniques
are cross- referenced against each other to ensure the completeness
and accuracy of the whole application.

 Software developers and program managers are used the SSADM in
software development team.

A software developer represents the software application using UML
notations. Illustrates and interpret software application, relationships,
actions and connections.

A program manager shows high level static software structures in
presentations and specification documentation.

Basic Concepts of Object Orientation
 Class

 Object

 Attributes

 Methods

 Inheritance

 Encapsulation and Information Hiding

 Polymorphism

 Message

Class
 The role of a class is to define the attributes and methods (the state and

behavior) of its instances. The class car, for example, defines the
property color.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 9

 Each individual car (object) will have a value for this property, such as
"maroon,""yellow" or "white."

Class Hierarchy
 An object-oriented system organizes classes into subclass-super

hierarchy.
 At the top of the hierarchy are the most general classes and at the

bottom are the most specific.
 A subclass inherits all of the properties and methods (procedures)

defined in its super class.
Object

The term object was first formally utilized in the similar language to
simulate some aspect of reality.
An object is an entity.

 It knows things (has attributes)
 It does things (provides services or has methods)
 Attributes or properties describe object‘s state (data) and methods

define its behavior.
 In an object-oriented system, everything is an object: numbers, arrays,

records, fields, files, forms, an invoice, etc.
 An Object is anything, real or abstract, about which we store data and

those methods that manipulate the data.
 Conceptually, each object is responsible for itself.
 A window object is responsible for things like opening, sizing, and closing

itself.
 A chart object is responsible for things like maintaining its data and labels,

and even for drawing itself.
Attributes

 Attributes represented by data type.
 They describe objects states.
 In the Car example the car‘s attributes are:

Color, manufacturer, cost, owner, model, etc.,
Methods

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 10

 Methods define objects behavior and specify the way in which an
Object‘s data are manipulated.

 In the Car example the car‘s methods are: drive it, lock it, tow it, carry
passenger in it.

Inheritance (programming by extension)
 Inheritance is a relationship between classes where one class is the

parent class of another (derived) class.
 Inheritance allows classes to share and reuse behaviors and attributes.
 The real advantage of inheritance is that we can build upon what we already

have and,
 Reuse what we already have.

 Multiple Inheritances
 OO systems permit a class to inherit from more than one super class.
 This kind of inheritance is referred to as multiple inheritance.

 Encapsulation and Information Hiding
 Information hiding is a principle of hiding internal data and procedures

of an object
 By providing an interface to each object in such a way as to reveal as little as

possible about its inner workings.
 Encapsulation protects the data from corruption.

Polymorphism
 Polymorphism means that the same operation may behave differently on

different classes.
 Example: compute Payroll.

Message
 Objects perform operations in response to messages. For example, you

may communicate with your computer by sending it a message from hand-
help controller.

The software development process

 It consists of analysis, design, implementation, testing and retirement is
to transform users’ needs into a software solution that satisfies needs.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 11

 It is tempting to ignore the process and plunge into the implementation
and programming phases of software development.

 Programmers have been able to ignore the counsel of systems
development is a building a system.

 The development itself in essence is a process of change, refinement,
transformation to the existing product.

 The object-oriented approach provides us a set of rules for describing
inheritances and specialization in a consisted way when a sub process
changes the behavior of its parent process.

 The process can be divided into small, interacting phases sub process.
 Each sub process have following:
 A description in terms of how it works.
 Specification of the input required for the process.
 Specification of the output to be produced.

 The software development process can be viewed in a series of
transformations where the output of one transformation becomes the
input of the subsequent transformation.

Transformation 1

1. It is analysis translates the users’ needs into system requirements and
responsibilities.
2. The way they use the system can provide insight into the user’s
requirements.
3. For example, one use of the system might be analyzing an incentive
payroll system which will tell us that this capacity must be included in the
system requirements.
4. Software process reflecting transformation from needs to a software
product that
Transformation 2
1. It comes and explains about the design part.
2. It begins with a problem statement and ends with a detailed design that can
be transformed into an operational system.
3. This transformation includes the bulk of the software development activity.
4. It also includes the design descriptions, the program and the testing
materials.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 12

Transformation 3

1. In this discuss about the implementation part.
2. Implementation refines the detailed design into the system deployment that
will satisfy the users needs.
3. This takes into account the equipment, procedures, people and the like.
4. It represents embedding environment product with its operational
environment.
5. For example, the new compensation method is programmed, new forms
are put to use and new reports now can be printed.
6. In the real world, the problems are not always well-defined and that is why
the waterfall model has utility.
7. For example, it a company has expenses in building accounting system,
then building another such product based on the existing design is best
managed with the waterfall model.
8. This model assumes that the requirements are known before the design
begins.
9. But one may need experience with the product before the requirements can
be fully understood.
10. It also assumes that the requirements will remain static over the
development cycle.
11. That a product delivered months after it was specified will meet the
delivery time needs.

The Object Model

 Object oriented development offers a different model from the
traditional software development approach, which is based on functions
and procedures.

 An Object-Oriented environment, software is a collection of discrete
objects that encapsulate their data and the functionality to model real
world “Objects”.

 Object are defined, it will perform their desired functions and seal them
off in our mind like black boxes.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 13

 The object- Oriented life cycle encourages a view of the world as a
system of cooperative and collaborating agents.

 An objective orientation producers system that are easier evolve, move
flexible more robust, and more reusable than a top-down structure
approach.

 An object orientation allows working at a higher level of abstraction.
 It provides a seamless transition among different phases of software

development.
 It encourages good development practices.
 It promotes reusability.

The unified Approach (UA)

The unified Approach (UA) is the methodology for software development
proposed and used.

 The following concepts consist of Unified Approach
1. Uses-case driven development.
2. Utilizing the unified modeling language for modeling.
3. Object-Oriented analysis where it utilizing we case and object modeling.
4. Object-Oriented design
5. Responsibilities of reusable classes and maximum reuse.
6. The layered approach.
7. Incremental development and prototyping.
8. Continuous testing.

The Elements of an Object Model

The elements of an object model are classes and objects, attributes,
operations and messages.

Class: A class is the definition of the behavior and properties of one or
more objects within the system. A class binds the data (attributes) of an
object to the behavior (operations) that it can perform.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 14

Objects: An object is an instance or specific example of a class. The
attributes of the class have specific values within an object of that class; and
the operations of a class operate on the attributes of individual objects.

Attributes: An attribute is a data value or state that describes an object
and helps you to tell one object from another of the same class.

Operations: An operation is a behavior or function that an object can
perform.

1. If the objects are required to implement a solution, then it is part of
the solution space.

2. If the object is necessary only to describe a solution, it is part of the
problem space.

Objects Can Have the Following Properties

1. External Entities
That produces or consumes information to be used by a computer-based
system. Ex. Other systems, devices, people.
2. Things
Those are part of the information domain for the problem. Ex. Reports,
Displays, Letters and Signals.
3. Occurrences

events that occur within the context of system
operation. Ex. A property transfer or the completion of series of robot
movement
4. Roles

It played by people who interact with the system.
Ex. Manager, Engineer, Sales Person.
5. Organization units

Those are relevant to an application. Ex. Division, Group, Team.
6. Places
That establishes the context of the problem and the overall function of the
system. Ex. Manufacturing floor
7. Structures

That defines a class of objects (or) in the extreme, related classes of objects.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 15

The Waterfall Software Development Process

Software development is the translation of a user need or marketing
goal into software product. The waterfall model is a sequential software
development model (a process for the creation of software) in which
development is seen as flowing steadily downwards (like a waterfall) through
the phases of requirements analysis, design, implementation, testing
(validation), integration, and maintenance.

Building High – Quality Software
1. Once system (Programs) exists, we must test it to see if it is tree of bugs.
2. High quality produces must meet user’s needs and expectations.
3. The products should attain this with minimal (or) no defects, the focus
being on improving products prior to delivery rather than correcting them
after delivery.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 16

4. To achieve high quality in software we need to be able to answer the
following questions.
5. How do we determine when the system id reading for delivery?
6. Is it now an operational system that satisfies user’s needs?
7. Is it correct and operating as we thought it should?
8. Does it pass an evaluation process?
9. There are two basis approaches to system testing.
10. This means of system evaluation in terms of four quality measures.
 They are:

 Correspondence
 Correctness
 Verification
 Validation

Correspondence

It measures how well the delivered system matches the needs of the
operational environment, as described in the original requirements
statements.
Correctness

It measures the consistency of the product requirements with the
respect to the design specification. Correctness determines whether (or) not
the system correctly computes the results based on the rules created during
the system analysis and design, measuring the consistency of product
requirements with respect to the design specification.
Verification:

Verification is the task of determining correctness.
Eg: Am I building the product right?
Validation is the task of predicting correspondence.
Eg: Am I building the right product?

Systems Development Lifecycle

Object – Oriented software development life cycle (SDLC)

It consists of three macro processes.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 17

1. Object – Oriented analysis.
2. Object – Oriented design.
3. Object – Oriented implementation.
Design

1. Object oriented system development includes these activities
2. Object oriented analysis use case driven
3. Object oriented design
4. Prototyping
5. Component – based development
6. Incremental testing
Validation:

 It is the task of predicting correspondence.
 True correspondence cannot be determined until the system is in place.

OBJECT – ORIENTED ANALYSIS USE CASE DRIVEN

1. The object oriented analysis phase of software development is concerned
with determining the system requirements and identifying classes and their
relationship to other classes in the problem domain.
2. The object-oriented programming community has adopted use cases to a
remarkable degree.
3. The intersection among objects roles to achieve a given goal is called
collaboration.
4. Expressing these high level processes and interactions with customers in a
scenario and analyzing it is referred to use-case modeling.
5. For example, the objects in the incentive payroll system might include the
following
examples.
a. The employee, worker, supervisor, office administrator.
b. The paycheck.
c. The process used to make the product.
Design

1. Object-Oriented design requires move rigor up front to do things right.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 18

2. We need to spend more time gathering requirements developing
requirements model and an analysis model, and then turning them into the
design model.
3. Object-Oriented design centers on establishing design classes and their
protocol.
4. Building class diagrams, user interfaces and usability based on usage and
use cases.
5. The use-case concept can be employed through most of the activities of
software development.

COMPONENT BASED DEVELOPMENT

1. Component based development (CBD) is an industrialized approach to
software development.
2. Software components are functional units or building block offering a
collection of reusable services.
3. A CBD developer can assemble components to construct a complete
software system.
4. Components themselves may be constructed from other components and so
on down to the level of prebuilt components (or) written in a language such
as C, COBOL.
5. The object-oriented concept addressed analysis, design and programming;
Whereas component-based development is concerned with the
implementation and system integration aspects. Eg. Software development.

RAPID APPLICATION DEVELOPMENT
Rapid application development (RAD) is a term originally used to describe
a software development process introduced by James Martin in 1991.
1. The rapid application development (RAD) approach to system
development rapidly develops software to quickly.
2. Incrementally implement the design by using tools such as case.
Reusability

1. Reusability is a major benefit of object-oriented system development.
2. It is also the most difficult promise to deliver.
3. To develop reusability in the objects.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 19

 Meta Class
A meta-class is a class about a class. They are normally used to provide

instance variables and operations.
Meta class in 7 points:

 Every object is an instance of a class
 Every class eventually inherits from Object
 Every class is an instance of a meta class
 The meta class hierarchy parallels the class hierarchy
 Every meta class inherits from Class and Behavior
 Every meta class is an instance of Meta class
 The meta class of Meta class is an instance of Meta class

Advantages of object-oriented programming are:
 The ability to reuse code.
 Develop more maintainable systems in a shorter amount of time.
 More resilient to change.
 More reliable, since they are built from completely tested and debugged

classes.

Information Hiding

 Information hiding was first promoted in structured systems

development.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 20

 The principle of information hiding suggests that only the information
required using software module be published to the user of the module.

 Typically, this implies the information required to be passed to the
module and the information returned from the module are published.

 Exactly how the module implements the required functionality is not
relevant.

 We really do not care how the object performs its functions, as long as
the functions occur.

 In object-oriented systems, combining encapsulation with the
information-hiding principle suggests that the information-hiding
principle be applied to objects instead of merely applying it to functions
or processes.

 As such, objects are treated like black boxes.
 The fact that we can use an object by calling methods is the key to

reusability because it shields the internal workings of the object from
changes in the outside system, and it keeps the system from being
affected when changes are made to an object.

 In above figure, notice how a message (insert new patient) is sent to an

object, yet the internal algorithms needed to respond to the message are
hidden from other parts of the system.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 21

 The only information that an object needs to know is the set of
operations, or methods, that other objects can perform and what
messages need to be sent to trigger them

Polymorphism

 Polymorphism means that the same message can be interpreted
differently by different classes of objects.

 For example, inserting a patient means something different than
inserting an appointment.

 As such, different pieces of information need to be collected and stored.
 We do not have to be concerned with how something is done when

using objects.
 We can simply send a message to an object, and that object will be

responsible for interpreting the message appropriately.
 For example, if an artist sent the message Draw yourself to a square
object, a circle object, and a triangle object, the results would be very
different, even though the message is the same.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 22

 The above figure how each object responds appropriately (and
differently) even though the messages are identical.

RELATIOPNSHIPS IN THE UML

There is a Semantic connection among elements. There are four kinds
of relationships in the UML.

 Dependency
 Association
 Generalization
 Realization

Dependency

A dependency is a semantic relationship between two things in which a
change to one thing may affect the semantics of other thing. Change in
structure or behavior of a class affects the other related class, then there is a
dependency between those two classes. It need not be the same vice-versa.
When one class contains the other class it happens.

Association

Association is a relationship between two objects. In other words,
association defines the multiplicity between objects. We may be aware of
one-to-one, one-to-many, many-to-one, many-to-many all these words define
an association between objects. Aggregation is a special form of association.
Composition is a special form of aggregation.

Example: A Student and a Faculty are having an association.

Generalization

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 23

A generalization is a specification / generalization relationship in which
objects of the specified element are substitutable of the generalized element.
Generalization uses a “is-a” relationship from a specialization to the
generalization class. Common structure and behavior are used from the
specialization to the generalized class. At a very broader level you can
understand this as inheritance. Why I take the term inheritance is, you can
relate this term very well. Generalization is also called a “Is-a” relationship.

Example: Consider there exists a class named Person. A student is a person.
A faculty is a person. Therefore here the relationship between student and
person, similarly faculty and person is generalization.

Realization
A realization is a semantic relationship between classifiers, where in

one classifiers specifies a contract that another classifier guarantees to carry

out. Realization is a relationship between the blueprint class and the object

containing its respective implementation level details. This object is said to

realize the blueprint class. In other words, you can understand this as the

relationship between the interface and the implementing class.

Example: A particular model of a car ‘GTB Fiorano’ that implements the
blueprint of a car realizes the abstraction.

We will encounter realization relationship in two places
 Between interfaces.
 The classes or components.

Aggregation

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 24

Aggregation is a special case of association. It is a directional
association between objects. When an object ‘has-a’ another object, then you
have got an aggregation between them. Direction between them specified
which object contains the other object. Aggregation is also called a “Has-a”
relationship.

Composition

Composition is a special case of aggregation. In a more specific
manner, a restricted aggregation is called composition. When an object
contains the other object, if the contained object cannot exist without the
existence of container object, then it is called composition.

Example: A class contains students. A student cannot exist without a class.
There exists composition between class and students.

Class diagram

1. The class diagram shows the building blocks of any object oriented
system. This diagram describes a static view of the model to show
what attributes and behaviors it has.

2. A class diagram shows a set of classes , interfaces, collaboration and
their relationships.

3. Classes are represented by a rectangle which shows the name of the
class, name of the operations and attributes. Compartments are used
to divide the class name, attributes and operations.

4. If the ‘+’ symbol is used the attribute (or) operation has a public
level of visibility.

5. If a ‘-‘symbol is used, the attribute or operation is private.
6. In addition, ‘#’ symbol allows an operation or attribute to be defined

as protected.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 25

7. The ‘~’ symbol indicates package visibility. (grouping behavior)

In above structure,

Flower – class name fragrance, color – attributes life (), use () – methods

Contents of class diagram:

 It contains the following things.

i) Classes
ii) Interfaces
iii) Collaborations
iv) Relationships

Common uses:

i) To model the vocabulary of a system.
ii) To model simple collaborations.
iii) To model a logical database schema.

Inheritance

 Inheritance, as an information systems development characteristic, was
proposed in data Modeling.

flower

Fragrance – string

color -string

Life()

Use()

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 26

 The data modeling literature suggests using inheritance to identify
higher-level, or more general, classes of objects. Common sets of
attributes and methods can be organized into super classes.

 Typically, classes are arranged in a hierarchy, whereby the super
classes, or general classes, are at the top, and the subclasses, or specific
classes, are at the bottom.

 In Figure, person is a super class to the classes Doctor and Patient.
Doctor, in turn, is a super class to General Practitioner and Specialist.

 How a class (e.g., Doctor) can serve as a super class and subclass
concurrently.

 The relationship between the class and its super class is known as the a-
kind-of relationship.

 For example in Figure, a General Practitioner is a-kind-of Doctor,
which is a-kind-of Person.

 Subclasses inherit the appropriate attributes and methods from the
super classes above them. That is, each subclass contains attributes and
methods from its parent super class.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 27

 For example, both Doctor and Patient are subclasses of Person will
inherit the attributes and methods of the Person class.

 Inheritance makes it simpler to define classes.
 Instead of repeating the attributes and methods in the Doctor and

Patient classes separately, the attributes and methods that are common
to both are placed in the Person class and inherited by those classes
below it.

 Most classes throughout a hierarchy will lead to instances; any class
that has instances is called a concrete class.

 For example, if Mary Wilson and Jim Maloney were instances of the
Patient class, Patient would be considered a concrete class.

 The classes are referred to as abstract classes. Person is an example of
an abstract class.

Rambaugh’s Object Modeling Technique

 This method supports all of the main object oriented semantics ie)
inheritance, aggregation, association etc.,

 It must cover analysis, design, and implementation using oo
techniques.

 It supports real time applications and management information
system.

 OMT is fast and ability approach for identifying attributes, methods,
inheritance and association.

 It should not be over complex.
 The combination of object, dynamic and functional models supports

many kinds of applications.

OMT phases:

i) Analysis – the results are object dynamic and functional model.
ii) System Design – the results are structure of the system along with

high level strategy decision.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 28

iii) Object design – produces the detailed design for object dynamic
and functional model.

iv) Implementation - produces reusable extensible and robust code.

OMT MODELS:

 Object Model
 Dynamic Model
 Functional Model

Object Model:

 It is central to the method and user diagrams which are similar to
“E-R diagrams”.

 It describes structure of objects in a system.
 Classes and their attributes and operations are shown together

with relationships between classes.
 The relationship which can be drawn includes inheritance,

aggregation and association.
 It is graphically represented by class diagram.
 Each class represents individual objects.

 Example:

class
attributes
operations

vehicle
Color

Width

model

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 29

Dynamic Model

 This model consists of a state transition diagram for each class
have states, transition, events and actions.

 Each state receives one or more events and it makes the transition
to the next state.

 The next state depends on the current state as well as events.

Functional Model

Move()

Repair()

Idle

Gun removed

New gun inserted

Cancelled

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 30

 This model uses a hierarchy of data flow diagram shows the flow
of data between different processes in a business.

 However, the DFD’S are very useful to understand the system
process.

Symbols used in data flow:

1. Process:

Any fuction being performed. Example: verify password.

2. The data flow:

Direction of data movement. Example: PINCODE

3. The data store:

Location, where data are stored. Example: account

4. External entity:

Source or destination of data. Example: ATM card reader.

ATM Machine

Insert card

Select a/c

Enter password

Select amount

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 31

Booch methodology .

 The Booch methodology provides an Object Oriented development in
the analysis and design phases.

 The analysis phase contains requirements, high level description of the
system function and structure.

 It also defines classes and their attributes, inheritance, methods.
 Once the analysis phase is completed, the Booch methodology

develops the architecture in the design phase.
 Booch uses large set of symbols.
 The Booch Methodology consists of the following diagrams:

o Class diagram
o Object diagram
o State transition diagram
o Module diagram
o Process diagram
o Interaction diagram

 The Booch methodology recommends a macro development process
and micro development process.

user

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 32

i) The Macro Development Process

a. It controls the framework for micro development process
b. It can take time duration of weeks or even months.
c. It is technical management of a system.
d. Phases:

i. Conceptualization
ii. Analysis and development of the model

iii. Design or create the system architecture
iv. Evolution or implementation
v. Maintenance

 Conceptualization:
a. Requirements
b. Project goals
c. Prepare a prototype to prove the concept

 Analysis and development:
a. Use class diagrams to describe roles and

their responsibilities.
b. Use object diagrams to describe the behavior

of a system.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 33

c. Use interaction diagrams to describe the
behavior of a system.

 Design or system architecture

a. What class exists and relationships between
classes.

b. Use object diagrams to represent
collaborations.

c. Use module diagram to represent how
objects and classes are declared.

d. Use process diagrams to represent which
processor to allocate process.

 Evolution or implementation:

a. Create source code with desired
programming language.

 Maintenance:

a. Changes to the system to add new
requirements and eliminates the bugs.

ii) The Micro Development Process:

a. Description of day-to-day activities
b. Steps:

i. Identify classes and objects.
ii. Identity classes, objects and semantics.

iii. Identity classes, objects, & relationships
iv. Identify classes, objects, interface and implementation.

Example:

Interaction diagram:

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 34

The Jacobson Methodology.

It contains

i) Use cases
ii) Object Oriented Business Engineering(OOBE)
iii) Object Oriented Software Engineering(OOSE)
iv) Objectory (Object Factory for software development)

Use cases

 Use cases are scenarios for understanding system requirements.
 Use case is a description of a system’s behavior and its respond to a

requirement from outside of that system. In other words a use case
describes ‘who’ can do and ‘what’ with the system.

 A use case defines the interactions between external actors and the
system.

 An actor specifies a role played by a person. It also describes the
actor to achieve a particular goal.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 35

 A use case is a methodology used in system analysis to identify,
clarify, and organize system requirements.

 Use case is made up of possible sequences of interactions between
system and users in a particular environment and related to a
particular goal.

 It consists of a group of elements (classes and interfaces) and it
includes all system activities.

 A use case has the following characteristics.

 Organize functional requirements.
 Models the goal of a system and actor.
 Describes main flow of events.
 Use case can use functionality of another one.

Object Oriented Software Engineering (OOSE)

 Suitable for large and real time systems.
 The development process is called use case driven developmental

process. This process stress analysis, design, validation and testing.

Models for expressing all the software development phases

1) Use case model
2) Domain object Model
3) Analysis object Model
4) Implementation object Model
5) Test model

Use case model: It tells about outside actors and behavior of the system.

Domain object Model: Mentions the real world objects.

Analysis object Model: tells how source code should be carried out and
written.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 36

Implementation object Model: specifies all the implementation details such as
DFD’s & ER-model, database structure etc.,

Testing Model: To remove bugs.

Example: Unit testing, white box testing, black box testing, stress testing,
system testing, integration testing etc.,

Object Oriented Business Engineering (OOBE)

 Mainly used for enterprise level.
 Main sources are use cases.
 Phases:

i) Analysis - Mention about the problems and requirements.
ii) Design & implementation - DBMS candidates to programming
languages, GUI tools.
iii) Testing - Types of testing correct bugs.

Building Blocks of UML

As UML describes the real time systems it is very important to make a
conceptual model and then proceed gradually. Conceptual model of UML can
be mastered by learning the following three major elements:

 UML building blocks
 Rules to connect the building blocks
 Common mechanisms of UML

The building blocks of UML can be defined as:

 Things
 Relationships
 Diagrams

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 37

(1) Things

Things are the most important building blocks of UML. Things can be:

 Structural
 Behavioral
 Grouping
 Annotational

Structural things

The Structural things define the static part of the model. They represent
physical and conceptual elements.

Following are the brief descriptions of the structural things.

Class:

Class represents set of objects having similar responsibilities.

Interface:

Interface defines a set of operations which specify the responsibility of a
class.

Collaboration:

Collaboration defines interaction between elements.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 38

Use case:

Use case represents a set of actions performed by a system for a specific goal.

Component:

Component describes physical part of a system.

Node:

A node can be defined as a physical element that exists at run time.

Behavioral things

A behavioral thing consists of the dynamic parts of UML models. Following
are the behavioral things:

Interaction:

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 39

Interaction is defined as a behavior that consists of a group of messages
exchanged among elements to accomplish a specific task.

State machine:

State machine is useful when the state of an object in its life cycle is
important. It defines the sequence of states an object goes through in response
to events. Events are external factors responsible for state change.

Grouping things:

Grouping things can be defined as a mechanism to group elements of a
UML model together. There is only one grouping thing available:

Package:

Package is the only one grouping thing available for gathering structural and
behavioral things.

Annotational Things:

Annotational things can be defined as a mechanism to capture remarks,
descriptions, and comments of UML model elements. Note is the only one
Annotational thing available.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 40

Note:

A note is used to render comments, constraints etc of an UML element.

(2) Relationship

Relationship is another most important building block of UML. It shows
how elements are associated with each other and this association describes
the functionality of an application.

There are four kinds of relationships available.

Dependency:

Dependency is a relationship between two things in which change in one
element also affects the other one.

Association:

Association is basically a set of links that connects elements of an UML
model. It also describes how many objects are taking part in that relationship.

Generalization:

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 41

Generalization can be defined as a relationship which connects a specialized
element with a generalized element. It basically describes inheritance
relationship in the world of objects.

Realization:

Realization can be defined as a relationship in which two elements are
connected. One element describes some responsibility which is not
implemented and the other one implements them. This relationship exists in
case of interfaces.

UML Diagrams

UML diagrams are the ultimate output of the entire discussion. All the
elements, relationships are used to make a complete UML diagram and the
diagram represents a system.

The visual effect of the UML diagram is the most important part of the entire
process. All the other elements are used to make it a complete one.

UML includes the following nine diagrams and the details are described in
the following chapters.

1. Class diagram
2. Object diagram
3. Use case diagram
4. Sequence diagram
5. Collaboration diagram
6. Activity diagram

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 42

7. State chart diagram
8. Deployment diagram
9. Component diagram

UML Class Diagram

The class diagram is a static diagram. It represents the static view of an
application. Class diagram is not only used for visualizing, describing and
documenting different aspects of a system but also for constructing
executable code of the software application.

The class diagram describes the attributes and operations of a class and also
the constraints imposed on the system. The class diagrams are widely used in
the modeling of object oriented systems because they are the only UML
diagrams which can be mapped directly with object oriented languages.

The class diagram shows a collection of classes, interfaces, associations,
collaborations and constraints. It is also known as a structural diagram.

Purpose:

 Analysis and design of the static view of an application.
 Describe responsibilities of a system.
 Base for component and deployment diagrams.
 Forward and reverse engineering.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 43

Class diagrams are used for:

 Describing the static view of the system.
 Showing the collaboration among the elements of the static view.
 Describing the functionalities performed by the system.
 Construction of software applications using object oriented languages.

UML Object Diagram

Object diagrams are derived from class diagrams so object diagrams
are dependent upon class diagrams.

Object diagrams represent an instance of a class diagram. The basic concepts
are similar for class diagrams and object diagrams. Object diagrams also
represent the static view of a system but this static view is a snapshot of the
system at a particular moment.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 44

Object diagrams are used to render a set of objects and their relationships as
an instance.

Purpose:

 Forward and reverse engineering.
 Object relationships of a system
 Static view of an interaction.
 Understand object behavior and their relationship from practical

perspective

Object diagrams are used for:

 Making the prototype of a system.
 Reverse engineering.
 Modeling complex data structures.
 Understanding the system from practical perspective.

UML Component Diagram

Component diagrams are different in terms of nature and behaviour.
Component diagrams are used to model physical aspects of a system.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 45

Now the question is what are these physical aspects? Physical aspects are the
elements like executables, libraries, files, documents etc which resides in a
node.

So component diagrams are used to visualize the organization and
relationships among components in a system. These diagrams are also used to
make executable systems.

Purpose:

 Visualize the components of a system.
 Construct executables by using forward and reverse engineering.
 Describe the organization and relationships of the components.

Now the usage of component diagrams can be described as:

 Model the components of a system.
 Model database schema.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 46

 Model executables of an application.
 Model system's source code.

UML Deployment Diagram

Deployment diagrams are used to visualize the topology of the physical
components of a system where the software components are deployed.

So deployment diagrams are used to describe the static deployment view of a
system. Deployment diagrams consist of nodes and their relationships.

Purpose:

 Visualize hardware topology of a system.
 Describe the hardware components used to deploy software

components.
 Describe runtime processing nodes.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 47

So the usage of deployment diagrams can be described as follows:

 To model the hardware topology of a system.
 To model embedded system.
 To model hardware details for a client/server system.
 To model hardware details of a distributed application.
 Forward and reverse engineering.

UML Use Case Diagram

To model a system the most important aspect is to capture the dynamic
behavior. To clarify a bit in details, dynamic behavior means the behavior of
the system when it is running /operating.

So only static behavior is not sufficient to model a system rather dynamic
behavior is more important than static behavior. In UML there are five

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 48

diagrams available to model dynamic nature and use case diagram is one of
them. Now as we have to discuss that the use case diagram is dynamic in
nature there should be some internal or external factors for making the
interaction.

These internal and external agents are known as actors. So use case diagrams
are consists of actors, use cases and their relationships. The diagram is used
to model the system/subsystem of an application. A single use case diagram
captures a particular functionality of a system.

So to model the entire system numbers of use case diagrams are used.

Purpose:

 Used to gather requirements of a system.
 Used to get an outside view of a system.
 Identify external and internal factors influencing the system.
 Show the interacting among the requirements are actors.

So the following are the places where use case diagrams are used:

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 49

 Requirement analysis and high level design.
 Model the context of a system.
 Reverse engineering.
 Forward engineering.

UML Interaction Diagram

From the name Interaction, it is clear that the diagram is used to
describe some type of interactions among the different elements in the model.
So this interaction is a part of dynamic behavior of the system.

This interactive behavior is represented in UML by two diagrams known
as Sequence diagram and Collaboration diagram. The basic purposes of both
the diagrams are similar.

Sequence diagram emphasizes on time sequence of messages and
collaboration diagram emphasizes on the structural organization of the
objects that send and receive messages.

Purpose:

 To capture dynamic behavior of a system.
 To describe the message flow in the system.
 To describe structural organization of the objects.
 To describe interaction among objects.

We have two types of interaction diagrams in UML. One is sequence diagram
and the other is a collaboration diagram.

The sequence diagram captures the time sequence of message flow from one
object to another and the collaboration diagram describes the organization of
objects in a system taking part in the message flow.

In a brief the following are the usages of interaction diagrams:

 To model flow of control by time sequence.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 50

 To model flow of control by structural organizations.
 For forward engineering.
 For reverse engineering.

UML State chart Diagram

The name of the diagram itself clarifies the purpose of the diagram and other
details. It describes different states of a component in a system. The states are
specific to a component/object of a system.

A State chart diagram describes a state machine. Now to clarify it state
machine can be defined as a machine which defines different states of an
object and these states are controlled by external or internal events.

Activity diagram is a special kind of a State chart diagram. As State chart
diagram defines states it is used to model lifetime of an object.

Purpose:

 To model dynamic aspect of a system.
 To model life time of a reactive system.
 To describe different states of an object during its life time.
 Define a state machine to model states of an object.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 51

So the main usages can be described as:

 To model object states of a system.
 To model reactive system. Reactive system consists of reactive objects.
 To identify events responsible for state changes.
 Forward and reverse engineering.

UML Activity Diagram

Activity diagram is another important diagram in UML to describe
dynamic aspects of the system.

Activity diagram is basically a flow chart to represent the flow form one
activity to another activity. The activity can be described as an operation of
the system.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 52

So the control flow is drawn from one operation to another. This flow can be
sequential, branched or concurrent. Activity diagrams deals with all type of
flow control by using different elements like fork, join etc.

Purpose:

 Draw the activity flow of a system.
 Describe the sequence from one activity to another.
 Describe the parallel, branched and concurrent flow of the system.

So before drawing an activity diagram we should identify the following
elements:

 Activities
 Association
 Conditions
 Constraints

Following are the main usages of activity diagram:

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 53

 Modeling work flow by using activities.
 Modeling business requirements.
 High level understanding of the system's functionalities.
 Investigate business requirements at a later stage.

Unified Approach

 The idea behind the UA is not to introduce yet another methodology.
The main motivation here is to combine the best practices, processes,
 methodologies, and guidelines along with UML notations and
diagrams.

 The unified approach to software development revolves around (but
is not limited to) the following processes and components.

The UA processes

 • Use-case driven development.

 • Object-oriented analysis.

 • Object-oriented design.

 • Incremental development and prototyping.

 • Continuous testing.

UA Methods and Technology

 • Unified modeling language (UML) used for modeling.

 • Layered approach.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 54

 • Repository for object-oriented system development patterns and
frameworks.

 • Promoting Component-based development.

UA Object-Oriented Analysis: Use-Case Driven

 • The use-case model captures the user requirements.

 • The objects found during analysis lead us to model the classes.

 • The interaction between objects provides a map for the design phase
to model the relationships and designing classes.

UA Object-Oriented Design

 • Booch provides the most comprehensive object-oriented design
method.

 • However, Booch methods can be somewhat imposing to learn and
especially tricky to figure out where to start.

 • UA realizes this by combining Jacobson et al.'s analysis with Booch's
design concept to create a comprehensive design process.

Iterative Development and Continuous Testing

 • The UA encourages the integration of testing plans from day 1 of the
project.

 • Usage scenarios or Use Cases can become test scenarios; therefore,
use cases will drive the usability testing.

Modeling Based on the Unified Modeling Language

 • The UA uses the unified modeling language (UML) to describe and
model analysis and design phases of system development.

The UA Proposed Repository

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 55

 • The requirement, analysis, design, and implementation documents
should be stored in the repository, so reports can be run on them for
traceability.

 • This allows us to produce designs that are traceable across
requirements, analysis, design, implementation, and testing.

The Layered Approach to Software Development

 Most systems developed with today's CASE tools or client-server
application development environments tend to lean toward what is known as
two-layered architecture: interface and data.

Two-Layer Architecture

 In a two-layer system, user interface screens are tied directly to the data
through routines that sit directly behind the screens

Problem with the Two-Layer Architecture

 This approach results in objects that are very specialized and cannot be
reused easily in other projects.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 56

Three-Layer Architecture

Your objects are completely independent of how:

– they are represented to the user (through an interface) or
– how they are physically stored.

User Interface layer

This layer is typically responsible for two major aspects of the applications:

• Responding to user interaction

• Displaying business objects.

Business Layer

• The responsibilities of the business layer are very straight- forward:

• model the objects of the business and how they interact to accomplish the
business processes.

Business Layer: Real Objects

These objects should not be responsible for:

1. Displaying details

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 57

2. Data access details

Access Layer

The access layer contains objects that know how to communicate with the
place where the data actually resides, whether it is a relational database,
mainframe, Internet, or file. The access layer has two major responsibilities:
Translate request, Translate result.

Database Interface

The interface on a database must include a data definition language (DDL), a
query, and data manipulation language (DML). These languages must be
designed to fully reflect the flexibility and constraints inherent in the data
model. Database systems have adopted two approaches for interfaces with the
system.

i) To Embed a Database Language.
ii) To Extend the host programming language.

To Embed a Database Language:

 One is to embed a database language, such as structured query
language (SQL), in the host programming language.

 This approach is a very popular way of defining and designing a
database and its schema such as SQL, which has become an
industry standard for defining databases.

 The problem with this approach is that application programmers
have to learn and use two different languages.

To Extend the host programming language:

 To extend the host programming language with Database related
constructs.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 58

 This is the major approach, since application programmers need
to learn only a new construct of the same language rather than a
completely new language.

 Many of the currently operational databases and object-oriented
database systems have adopted this approach; a good example is
GemStone from Servio Logic, which has extended the Smalltalk
object-oriented programming.

Database Schema and Data Definition Language

To represent information in a database, a mechanism must exist to
describe or specify to the database the entities of interest.

 A data definition language (DDL) is the language used to describe
the structure of and relationships between objects stored in a
database.

 This structure of information is termed the database schema. In
traditional databases, the schema of a database is the collection of
record types and set types or the collection of relationships,
templates, and table records used to store information about entities
of interest to the application.

 For example, to create logical structure or schema, the following
SQL command can be used:

 CREATE SCHEMA AUTHORIZATION (creator)

 CREATE DATABASE (database name)

 For example,

CREATE TABLE INVENTORY

 (Inventory_Number Char(10) Not Null

 Description Char(25) Not Null

 Price Decimal (9, 2));

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 59

 The structured query language (SQL) is the standard DML for
relational DBMSs. SQL is widely used for its query capabilities.

 The query usually specifies
 The domain of the discourse over which to ask the query.
 The elements of general interest.
 The conditions or constraints that apply.
 The ordering, sorting, or grouping of elements and the constraints

 DML are either procedural or nonprocedural.
 A procedural DML requires users to specify what data are desired and

how to get the data.
 A nonprocedural DML, like most databases' fourth generation

programming language (4GLs), requires users to specify what data are
needed but not how to get the data.

 Object-oriented query and data manipulation languages, such as Object
SQL, provide object management capabilities to the data manipulation
language.

 In a relational DBMS, the DML is independent of the host
programming language.

 A host language such as C or COBOL would be used to write the body
of the application.

 Typically, SQL statements then are embedded in C or COBOL
applications to manipulate data.

 Once SQL is used to request and retrieve database data.
 The SQL retrieval must be transformed into the data structures of the

programming language.
 A disadvantage of this approach is that programmers code in two

languages,
 SQL and the host language:

 For example, to check the table content, the SELECT command
is used, followed by the desired attributes. Or, if weou want to
see all the attributes listed, use the (*) to indicate all the

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 60

attributes: SELECT DESCRIPTION, PRICE FROM
INVENTORY where inventory is the name of a table.

Multi-Database Systems

o Heterogeneous information systems facilitate the integration of
heterogeneous information sources, where they can be structured, semi –
structured & sometimes unstructured. Such heterogeneous information
systems are referred to as federated multi-database systems

o A multi-database systems (MDBS) is a database system that resides
unobtrusively on top of, say, existing relational and object databases & file
systems & presents a single database illusion to users

o The global schema is constructed by consolidating (integrating) the
schemata of local databases; schematic differences (conflicts) among them
are handled by neutralization (homogenization), the process of consolidating
the local schemata

o The distinctive characteristics of multi-database systems: -

 Automatic generation of a unified global database schema from local

databases, in addition to schema capturing and mapping for local
databases.

 Provision of cross–database functionality (global queries, transactions)

by unified schema.

 Integration of heterogeneous database systems with multiple databases

 Integration of data types other than relational data through use of tools

– driver generators, etc

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 61

 Provision of a uniform but diverse set of interfaces (e.g. an SQL –style
& C++) to access & manipulate data stored in local databases

o Open Database Connectivity: Multi-database Application Programming
interfaces: The benefits of being able to port database applications by writing
to an API for a virtual DBMS are so appealing to s/w developers that
computer industry recently introduced several multi-database API’s.

 ODBC is an application programming interface that provides solutions
to multi-database programming problem. Advantages:
1. It allows s/w developers to develop application without burden of learning
MDBS APIs
2. It has ability to store data for various applications or data from different
sources in any database & transparently access or combine the data on an as
needed basis.
3. Details of back-end are hidden from users
The application interacts with the ODBC driver manager which sends the
application calls (SQL statements) to database. The driver manager loads &
unloads drivers, performs status checks, & manages multiple connections
between applications & data sources
ODBC provides a mechanism for creating a virtual DBMS

Object Oriented Database Management Systems (OODBMS):

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 62

o To meet broader class of applications with unconventional & complex data
type requirements, popularity of OOP lead to concept of OODBMS. It is
combination of OOP and database technology which is popularly called as
object oriented databases.

o The rules of OODBMS form combination of both OO language properties
& DBMS properties.
The rules that make an object oriented system are as follows:

 The system must support complex objects which combination of

atomic types of objects
 Object identity must be supported and existence independent of its

values.
 Objects must be encapsulated with program & its data embodies

separation of interface.
 The system must support types or classes with their individual

concepts.
 The system must support inheritance whose advantage is shared codes

& interfaces.
 The system must avoid premature binding also known as late binding

or dynamic binding.
 The system must be computationally complete.
 The system must be extensible equal to status of system predefined

types.
 These requirements are met by most OOP languages like C++, etc.

Then comes the set of rules make a DBMS are
 It must be persistent, able to remember an object state – data survive

beyond execution time.
 It must be able to manage very large databases – storage & provide

performance features.
 It must accept concurrent users – support notions of atomic,

serializable transactions.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 63

 It must be able to recover from h/w & s/w failures – return to a
coherent state.

 Data query must be simple – graphical browser might fulfill this
requirement sufficiently.

Oriented Design Process and Corollaries:

Design Processes:

During the design phase the classes identified in OOA must be revisited
with a shift in focus to their implementation. New classes or attributes &
methods are to added for implementation purposes & user interfaces.

The object–oriented design process consists of following activities

1. Apply design axioms to design classes, their attributes, methods,
associations, structures & protocols. It constitutes two separate steps.
 ⇒ Refine & complete the static UML class diagram by adding details. This
steps consists of.

 Refine attributes.
 Design methods & protocols by UML activity diagram to represent
method’s algorithm.
 Refine associations between classes (if required).
 Refine class hierarchy & design with inheritance (if required).
 ⇒ Iterate and refine again.

2. Design the access layer.
 ⇒ Create mirror classes: For every business class identified & created, create
one access class.
 ⇒ Identify access layer class relationships.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 64

⇒ Simplify classes & their relationships: Main goal – eliminate redundant
classes & structures.

 Redundant classes: Don’t keep 2 classes that performs |||lr translate
request & results.
 Method classes: Try to eliminate classes with 1 or 2 methods by
combining with others.
 ⇒ Iterate & Refine again.

3. Design the view layer classes.
 ⇒ Design the macro level user interface, identifying view layer objects.
 ⇒ Design the micro level user interface, which includes the following
activities.

 Design view layer objects by applying the design axioms & corollaries
 Build a prototype of view layer interface.
 ⇒ Test usability & user satisfaction

 ⇒ Iterate and refine

4. Iterate & refine the whole design. Reapply design axioms, if needed repeat
preceding steps.

o Design must be traceable across requirements, analysis, design, code &
testing. There must be clear step–by–step approach to design from the
requirements model. All designed components must directly trace back to
user requirements.

Corollaries: -

Many corollaries may be derived as a direct consequence of axioms.
These corollaries may be more useful in making specific design decisions,
since they can be applied to actual situations more easily than original

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 65

axioms. They are also called design rules and are derived from 2 basic
axioms

o Corollary 1:

Uncoupled design with less information content.

◊ Highly cohesive objects can improve coupling because only a minimal
amount of essential information need be passed between objects.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 66

◊ The main goal here is to maximize objects cohesiveness among objects &
s/w components in order to improve coupling because only a minimal amount
of essential information need be passed between components.

◊ Coupling is a measure of strength of association established by a
connection from one object or s/w component to one another.

◊ The degree or strength of coupling between two components is measured
by amount & complexity of information transmitted between them. Coupling
increases (becomes stronger) with increasing complexity or obscurity of the
interface.

◊ Interaction coupling involves amount & complexity of messages between
components. It is desirable to have little interaction.

◊ Inheritance is a form of coupling between super and sub classes. A sub
class is coupled to its super class in terms of attributes and methods

◊ Cohesion reflects the “single–purposeless” of an object. Method cohesion
function cohesion means that a method should carry only one function. A
method that carries multiple functions is undesirable. Class cohesion means
that all the class’s methods & attributes must be highly cohesive meaning to
be used by internal methods or derived classes’ methods.

Corollary 2:

Single Purpose: Each class must have a single, clearly defined purpose.
When we document, we should be able to easily describe the purpose of a
class in a few sentences.

Corollary 3:

Large number of simple classes keeping the classes simple allows reusability.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 67

◊ The smaller are classes, the better are chances of reusing them in other
projects. Large & complex classes are too specialized to be reused.

◊ The primary benefit of s/w reusability is higher productivity. The s/w
development team that achieves 80% reusability is 4 times as productive as
team that achieves 20% reusability.

Corollary 4:

Strong mapping: There must be a string association between the physical
system (analysis’s object) & logical design (design’s object)

Corollary 5:

Standardization: Promote standardization by designing inter changeable
components and reusing existing classes or components

Corollary 6:

Design with inheritance: Common behavior (methods) must be moved ro
super classes. The super class–subclass structure must make logical sense

OBJECT – ORIENTED ANALYSIS USE CASE DRIVEN

The object oriented analysis phase of software development is
concerned with determining the system requirements and identifying classes
and their relationship to other classes in the problem domain.

The object-oriented programming community has adopted use cases to
a remarkable degree. The intersection among objects roles to achieve a given
goal is called collaboration. Expressing these high level processes and
interactions with customers in a scenario and analyzing it is referred to use-
case modeling.

The objects in the incentive payroll system might include the following

examples.
a. The employee, worker, supervisor, office administrator.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 68

b. The paycheck.
c. The process used to make the product.
Design

1. Object-Oriented design requires move rigor up front to do things right.
2. We need to spend more time gathering requirements developing a
requirements model and an analysis model, and then turning them into the
design model.
3. Object-Oriented design centers on establishing design classes and their
protocol.
4. Building class diagrams, user interfaces and usability based on usage and
use cases.
5. The use-case concept can be employed through most of the activities of
software development.

Class Interface Notation.

of a class.

: an operation with public visibility.
-oriented system

development
notation for an interface is a small circle with the name of the

interface connected to the class.

circle by a dashed arrow.
The dependent class is not required to actually use all of the operation

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 69

Binary Association Notation

A binary association is drawn as a solid path connecting two classes or
both ends may be connected to the same class which is represented in Figure.

An association may have an association name.

 Association Notation

The association name may have an optional back triangle in it, which is
illustrated in Figure.
The point of the triangle indicating the direction in which to read the name.
The end of an association, where it connects to a class is called the
association role. Each object is an instance of the class. Classes are

http://javapapers.com/core-java/javas-tolowercase-has-got-a-surprise-for-you/
http://javapapers.com/core-java/javas-tolowercase-has-got-a-surprise-for-you/

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 70

organized hierarchically in a class tree, and subclasses inherit the behavior of
their super classes.
and polymorphism, which when used in the definition of classes.
Objects have a lifetime.
They are explicitly created and exist for a period of time.
That traditionally, has been the duration of the process for which they were
created.
A file (or) a database can provide support for objects having a longer lifetime
longer than the duration of the process for which they well created.

Qualifier

• Qualifier is an association attribute. For example, a person object may be
associated to a Bank object.
• An attribute of this association is the account#.
• The account# is the qualifier of this association.

Binary and Entity Relationship

 The entity – relationship diagram focuses solely on data, representing a
“data network” that exists for a given system.

 The ERD is especially useful for application in which data and the
relationships that given a data are complex.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 71

 Unlike the data flow diagram, data modeling considers data
independently of the processing that transforms the data.

 The Object-relationship pair is the cornerstone of the data model.
 These pairs can be represented graphically using the entity relationship

diagram (ERD).
 The ERD was originally proposed for the design of relational database

system and has been extended by others.
 A set of primary components is identified for the ERD. Data objects,

attributes, relationships and various types indicators.
 The primary purpose of the ERD is to represent data objects and their

relationships.

Example Diagram Notation

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 72

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 73

CRC Approach and Naming Class

CRC Cards:

CRC – “Classes, Responsibility and Collaboration”, developed by
Cunningham, Wilkmon and Beck.

i) CRC is a technique for identifying Classes, Responsibilities and
their methods and attributes.

ii) CRC can help to identify classes.
iii) CRC is more teaching technique than the method identifying the

class.
iv) CRC cards are 4”x6” index cards.
v) All information for an object is written on a card.
vi) Cheap, portable, readily available and familiar.

Example:

Class name -> left hand corner
Responsibility -> under left hand corner
Collaborations -> right hand side

vii) CRS stresses the importance of creating the objects.

Classname

Responsibilities

Collaborators

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 74

CRC Process:

 It consists of three steps.

1. Identify classes and its responsibilities
2. Assign responsibilities
3. Identify collaborators

 Iterate

a. Classes are identified and grouped by common attributes
b. Class names are written on to CRC cards.
c. The card also notes sub and super classes.
d. The responsibilities are distributed.
e. Collaboration is to identify how classes interact.

Example: The vianet Bank ATM system.

 Class

Responsibilities

Account
Balance
Number

Checking A/C(sub
class)

Saving A/C (sub
class)

Transaction

Deposit
Withdraw
Get
balance

Identify classes & responsibilities

Identify Collaborations Assign Responsibilities

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 75

 In the above atm card class account- is responsible to Bank-client
class to keep track of balance, account number and other data of
method.
 It also provides certain responsibilities such as deposit, withdraw
and display balance.

Guidelines for Naming Classes

• The class should describe a single object, so it should be the singular form
of noun.
• Use names that the users are comfortable with.
• The name of a class should reflect its intrinsic nature.
• By the convention, the class name must begin with an upper case letter.
• For compound words, capitalize the first letter of each word - for example,
Loan Window.

Noun Phrase Approach

Noun:

 Noun is a textual description is conceived to be classes and verbs to
be methods of classes.

 All plurals are changed to singular, the nouns are listed and the list
is divided into 3 categories.
i) Relevant classes
ii) Fuzzy classes
iii) Irrelevant classes

 Disadvantage
 Assumes that the Requirements Document is complete and
correct.
Identifying tentative classes:

 Guide lines for selecting classes in an application:

 Look for noun and noun phrases in the use cases.
 Some classes are implicit.
 Avoid computer implementation classes.
 Carefully choose and define class names.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 76

Selecting classes from the relevant and fuzzy categories:

 Redundant classes:

i) Don’t keep two classes that express the same information
ii) If more than one word is being used to describe the same idea,

select the one that is most meaningful in the system.
iii) Eliminate duplication of classes having some information.
iv) Select any one, which is more meaningful by comparing it in

all manners.
v) Choose appropriate vocabulary.
 Adjective classes:

i) An adjective can suggest a different kind of object or different
use of the same object.

ii) It is relevant.
i) Choose whether the object represented by the noun behave

differently when the adjective is applied to it.
 Attribute classes:

i) Restarted as attributes and not as class
ii) Each class must have a purpose and every class should be

clearly defined.
iii) Formulate a statement of purpose for each candidate.
i) Identifying relevant classes and eliminating irrelevant classes

is an incremental process.
ii) Example: client status and demographic of client are not

classes. But attributes of the client class.
 Irrelevant classes:

i) Each class must have a purpose and every class should be clearly
defined and necessary.

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 77

Behavioral Model of UML

Interactions

Information is a behavior that comprises a set of messages exchanged among
a set of objects within a context to accomplish a purpose.
A message is a specification of a communication between objects that
conveys information with the o\expectation that activity will ensure.
An interaction may also be found in the representation of a component, node,
or use case, each of which in the UML is really a kind of classifier.

Use cases

A use case is a description of a set of sequences of actions, including
variants that a system performs to yield an observable result of value to an
actor.

Review Redundant classes

Review Redundant classes
Review Redundant classes

Review Redundant classes

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 78

Graphically a use case is rendered as ellipse.

Use case diagrams

A use case diagram shows a set of use cases and actors and their
relationships. Use case diagram commonly contains,

 Use cases
 Actor
 Dependency, generalization and association
 Relationship

Interaction diagrams

Interaction diagrams are used when you want to model the behavior of
several objects in a use case.

It contains objects, links, messages, Sequence diagrams, collaboration
diagrams, or both diagrams can be used to demonstrate the interaction of
objects in a use case.

Sequence diagrams

Sequence diagrams generally show the sequence of events that occur
A sequence diagram emphasis the some ordering of messages. Sequence
diagrams describe interactions among classes in terms of
An exchange of message over time.
Features.
Object lifeline.
Focus control.

Collaboration diagrams

฀ Collaboration diagrams show the relationship between the objects and
other order of messages
฀ The object is listed as icons and indicate the messages passed between
them.
The numbers next to be messages are called sequence number
Features

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 79

฀ Path – indicate how are object is linked to another
฀ Sequence number =indicate the time order of a message

Activity diagrams

Activity diagrams describe the workflow behavior or system.
The diagrams describe the state are of activities by showing the sequence of
activities performed.
Activity diagrams can show activities that are activities that are conditional or
Parallel.
Activity diagrams illustrate the dynamic nature of a system o\by modeling the
flow of control from activity to activity.
An activity represents an operation on some class in the system that result in
a change in state of the system.

Event

An event is the specification of a significant occurrence that has a location in
time and space.
Events may be external or internal.
External events are more that parts between that system and its actors.
Internal events are those that pass among objects that the inside the system.

Signals
A signal is a kind of event that represents the specification of an
asynchronous stimulus communicated between instances.
A signal represents a named object that is thrown asynchronously by one
object and then received by another.

State machines

A state machine is behavior that specifies the sequences of states an object
goes through during its lifetime in response, together with its response to
those events.

Processes and threads

I MSC INFORMATION TECHNOLOGY – OOAD & UML

SHRIMATI INDIRA GANDHI COLLEGE, TIRUCHIRAPPALLI - 2 Page 80

A process specifies a heavy weight flow that can execute concurrently with
other processes.
Thread specifies lightweight flow that can execute concurrently with other
threads within the same process.

Time and space
A time mark is a denotation for the time at which an event occurs.
A time expression is an expression that evaluates to an absolute or relative
value of time.
A time constraint is a semantic statement about the relative or absolute value
of time.
Location is the placement of component on a mode.

	SSADM(Structured System Analysis and Design Method)
	 The SSADM methodology is a well-defined (structured) methodology and is quite difficult to use.
	 When used skillfully it can produce well-documented, accurate information systems.
	 It recognizes the following stages in the systems development lifecycle.
	 It concentrates on the analysis and design phase of the Waterfall Model of the Systems
	The objectives of SSADM
	 Improve the project management and control.
	 Make more effective use of experienced and inexperienced development staff.
	 Develop better quality system.
	 Enable projects to be supported by computer based tools such as computer aided software engineering system.
	 Establish a framework for good communication between participents in a project.
	Stages in SSADM:
	SSADM is composed of seven stages within a project's life cycle, and at the end of each stage the analyst and users can decide whether to move on to the next level, abandon the project, or revise one or more stages.
	Stage 0: Feasibility
	Stage 1: Investigation of the Current Environment
	Stage 2: Business System Options
	Stage 3: Definition of Requirements
	Stage 4: Technical Systems Options
	Stage 5: Logical Design
	Stage 6: Physical Design
	SSADM uses a combination of three techniques:
	Systems Development Lifecycle
	Object – Oriented software development life cycle (SDLC)
	In above structure,
	Flower – class name fragrance, color – attributes life (), use () – methods
	Contents of class diagram:
	It contains the following things.
	i) Classes
	ii) Interfaces
	iii) Collaborations
	iv) Relationships
	Common uses:
	i) To model the vocabulary of a system.
	ii) To model simple collaborations.
	iii) To model a logical database schema.
	(1) Things
	Structural things
	Class:
	Interface:
	Collaboration:
	Use case:
	Component:
	Node:

	Behavioral things
	Interaction:
	State machine:

	Grouping things:
	Package:

	Annotational Things:
	Note:

	(2) Relationship
	Dependency:
	Association:
	Generalization:
	Realization:

	UML Diagrams
	UML Class Diagram
	Purpose:

	UML Object Diagram
	Purpose:
	UML Component Diagram
	Purpose:
	UML Deployment Diagram
	Purpose:
	UML Use Case Diagram
	Purpose:
	UML Interaction Diagram
	Purpose:

	UML State chart Diagram
	Purpose:

	UML Activity Diagram
	Purpose:
	Unified Approach
	The idea behind the UA is not to introduce yet another methodology. The main motivation here is to combine the best practices, processes, methodologies, and guidelines along with UML notations and diagrams.
	The unified approach to software development revolves around (but is not limited to) the following processes and components.
	The UA processes
	• Use-case driven development.
	• Object-oriented analysis.
	• Object-oriented design.
	• Incremental development and prototyping.
	• Continuous testing.
	UA Methods and Technology
	UA Object-Oriented Analysis: Use-Case Driven
	UA Object-Oriented Design
	Iterative Development and Continuous Testing
	Modeling Based on the Unified Modeling Language
	The UA Proposed Repository
	The Layered Approach to Software Development
	Two-Layer Architecture
	Problem with the Two-Layer Architecture
	Three-Layer Architecture
	User Interface layer
	Business Layer
	Access Layer

