
SHRIMATI INDIRA GANDHI COLLEGE

Affiliated to Bharathidasan University| Nationally Accredited at ‘A’ Grade(3rd

Cycle) by NAAC

An ISO 9001:2015 Certified Institution

Thiruchirrappalli

DISTRIBUTED OPERATING SYSTEMS

QUESTION BANK

DEPARTMENT OF COMPUTER SCIENCE,

INFORMATION TECHNOLOGY AND

COMPUTER APPLICATIONS

Prepared by

P ANANTHI

ASSISTANT PROFESSOR IN COMPUTER SCIENCE

SHRIMATI INDIRA GANDHI COLLEGE,

TIRUCHIRAPPALLI - 2

UNIT-I

Define distributed system.

 A distributed system is a collection of independent computers that appears to

its users as a single coherent system. A distributed system is one in which

components located at networked communicate and coordinate their actions

only by passing message.

Tightly coupled systems:

In these systems, there is a single system wide primary memory (address

space) that is shared by all the processors . If any processor writes, for example,

the value 100 to the memory location x, any other processor subsequently

reading from location x will get the value 100. Therefore, in these systems, any

communication between the processors usually takes place through the shared

memory.

Loosely coupled systems:

In these systems, the processors do not share memory, and each processor

has its own local memory .If a processor writes the value 100 to the memory

location x, this write operation will only change the contents of its local memory

and will not affect the contents of the memory. In these systems, all physical

communication between the processors is done by passing messages across

the network that interconnects the processors.

 List the characteristics of distributed system?

 Programs are executed concurrently,

 support for resource sharing.

 Openness

 Concurrency

 Scalability

 Fault Tolerance (Reliability)

 Transparency

 Components can fail independently (isolation, crash)

 Mention the examples of distributed system.

 The internet,

 Intranet.

 Department computing cluster

 Corporate systems

 Cloud systems (e.g. Google, Microsoft, etc.)

 Mobile and ubiquitous computing

Mention the challenges in distributed system.

1. Heterogeneity

2. Openness

3. Security

4. Scalability

5. Failure handling

6. Concurrency

7. Transparency

What are the Advantages of Distributed Systems?

1. Performance

2.Distribution

3.Reliability (fault tolerance)

4.Incremental growth

5.Sharing of data/resources

6.Communication

What are different types of transparencies required in distributed systems?

 Access Transparency

 Execution Transparency

 Replication Transparency

 Performance Transparency

 Configuration Transparency

Write a short note on quality of service in distributed systems.

 Quality of Service (a.K.a. QoS) refers to performance and other service

expectations of a client or an application.

 Performance

 Reliability and availability

 security Examples where this is important.

 Voice over IP (VOIP) and telephony

 Video (e.g. Netflix and friends)

Operating Systems are of different types and some of them are:

Single User OS: An operating system designed for use by a single individual,

for example MS-DOS (Microsoft Disk Operating System) is a single user

operating system.

Multi User OS: An operating system that can be used by more than one person.

Multi User operating system can be accessed simultaneously by several people

through communications facilities or via network terminals. Windows operating

system is one of the examples of multi user operating system.

Distributed OS: A form of information processing in which work is performed by

separate computers linked through a communications network. Distributed

operating system is usually categorized as either plain distributed processing

or true distributed processing. The distributed operating system has been

discussed in detail, later in this unit.

The various design issues in the development of distributed systems are

stated as follows:

 Transparency

 Flexibility

 Reliability

 Performance

 Scalability

 A distributed system is said to be transparent if the users of the system feel

that the collection of machines is a timesharing system and belongs entirely to

him.

Transparency can be achieved at two different levels. In the first level, the

distribution of the system is hidden from the users.

 In the other level, the system is made to look transparent to the programs.

Flexibility in distributed systems is important because this system is new for

engineers, and thus there may be false starts and it might be required to

backtrack the system.

 Distributed systems are more reliable than single-processor systems because

if one system in a distributed system stops functioning, other systems can take

over.

 Building a system, which is flexible and reliable, is of no use if the system is

slower than a single-processor system. To measure the performance of the

system, various performance metrics are used, such as number of jobs per hour,

system utilization and amount of network capacity consumed.

Types of Networks

 A computer network can be as small as several personal computers on a small

network or as large as the Internet.

 Depending on the geographical area they span, computer networks can be

classified into two main categories, namely, local area networks and wide area

networks.

 Local Area Networks

 A Local Area Network (LAN) is the network restricted to a small area such as

an office or a factory or a building. It is a privately owned network that is

confined to an area of few kilometers.

Wide Area Network (WAN)

 A Wide Area Network (WAN) spreads over a large geographical area like a

country or a continent. It is much bigger than a LAN and interconnects various

LANs. This interconnection helps in a faster and more efficient exchange of

information at a higher speed and low cost. These networks use telephone lines,

satellite transmission and other long-range communication technologies to

connect the various networks. For example, a company with offices in New

Delhi, Chennai and Mumbai may connect their individual LANs together through

a WAN. The largest WAN in existence is the Internet.

Network Topology A network topology refers to the way a network is laid out

either physically or logically.

The various network topologies include bus, ring, star, tree, mesh, and graph.

Bus/Linear Topology

The bus topology uses a common single cable to connect all the workstations.

Each computer performs its task of sending messages without the help of the

central server. Whenever a message is to be transmitted on the network, it is

passed back and forth along the cable from one end of the network to the other.

However, only one workstation can transmit a message at a particular time in

the bus topology.

Ring/Circular Topology

In the ring topology, the computers are connected in the form of a ring without

any terminated ends. Every workstation in the ring topology has exactly two

neighbours. The data is accepted from one workstation and is transmitted to

the destination through a ring in the same direction (clockwise or counter

clockwise) until it reaches its destination.

Star Topology

n the star topology, the devices are not directly linked to each other but are

connected through a centralized network component known as the hub or the

concentrator.

Tree Topology

 The tree topology combines the characteristics of the bus and star topologies.

It consists of groups of star-configured workstations connected to a bus

backbone cable.

Mesh Topology

In the mesh topology, each workstation is linked to every workstation in the

network. That is, every node has a dedicated point-to-point link to every other

NOTES Self-Instructional Material 23 Introduction to Computer Networks node.

The messages sent on a mesh network can take any of the several possible

paths from the source to the destination. A fully connected mesh network with

n devices has n(n-1)/2 physical links’

What is mobile agent?

 A mobile agent is a running program (including both code and data) that

travels from one computer to another in a network carrying out a task on

someone’s behalf, such as collecting information, and eventually returning with

the results.

What is layering?

The concept of layering is a familiar one and is closely related to abstraction.In

a layered approach, a complex system is partitioned into a number of layers,

with a given layer making use of the services offered by the layer below.

What are Software and hardware service layers in distributed systems? o

Applications, services

 Middleware

 Operating system

 Computer and network hardware

What is RPC?

A remote procedure call (RPC) is an inter-process communication that allows

a computer program to cause a procedure to execute in another address space

(commonly on another computer on a shared network) without the programmer

explicitly coding the details for this remote interaction.

What is the difference between RMI and RPC?

 Remote Procedure Call or the RPC and the Remote Method Invocation or RMI

are both message passing techniques in the Inter Process Communication

(IPC). But there are two basic differences between the two methods: 1. RPC

supports procedural programming. i.e. only remote procedures can be invoKed.

Whereas RMI is object-based. As the name suggests, it is invoKed on remote

objects. 2. In RPC, the parameters that are passed are ordinary data structures.

Whereas in RMI, objects can be passed as parameters.

Define Stub.

A stub in distributed computing is a piece of code used for converting

parameters passed during a Remote Procedure Call.

Client Stub:

Used when read is a remote procedure. Client stub is put into a library and

is called using a calling sequence. It calls for the local operating system. It does

not ask for the local operating system to give data, it asks the server and then

blocks itself till the reply comes.

Server Stub:

 When a message arrives, it directly goes to the server stub. Server stub has

the same functions as the client stub. The stub here unpacks the parameters

from the message and then calls the server procedure in the usual way.

 What is the use of RMI registry?

 The RMI registry is used to store a list of available services. A client uses the

registry to make it's proxy object, and the Registry is responsible for giving

appropriate information to the client so that it can hook up with the server that

implements the service.

What is a Message queue?

 Message queues offer a point-to-point service whereby producer processes

can send messages to a specified queue and consumer processes can receive

messages from the queue or be notified of the arrival of new messages in the

queue. Queues therefore offer an indirection between the producer and

consumer processes.

Define thrashing.

Thrashing is said to occur when the system spends a large amount of time

transferring shared data blocks from one node to another.

Thrashing may occur in the following situations:

1. When interleaved data accesses made by processes on two or more

nodes causes a data block to move back and forth from one node to another in

quick succession (a ping – pong effect)

2. When blocks with read only permissions are repeatedly invalidated soon

after they are replicated.

UNIT-II

 What are the types of communication paradigm in DS?

 Interprocess communication;

 Remote invocation;

 Indirect communication.

Differentiate persistent and non-persistent connections?

 HTTP can use both non-persistent connections and persistent connections.

A non-persistent connection is the one that is closed after the server sends the

requested object to the client. In other words, the connection is used exactly for

one request and one response.

 Non-persistent connections are the default mode for HTTP/1.0 With persistent

connections, the server leaves the TCP connection open after sending

responses and hence the subsequent requests and responses between the

same client and server can be sent. The server closes the connection only

when it is not used for a certain configurable amount of time.

What is meant by inter process Communication?

Inter process communication is concerned with the communication between

processes in a distributed system, both in its own right and as support for

communication between distributed objects. The Java API for inter process

communication in the internet provides both datagram and stream

communication.

What is Encoding?

It is the process of converting the original data packet into a stream that is

compatible with the communication channel.

What is Decoding?

The process of retrieving the received message to the original message at

the receiver node.

 What is meant by group communication?

Group communication is a multicast operation is more appropriate- this is

an operation that sends a single message from one process to each of the

members of a group of process, usually in such a way that the membership of

the group is transparent to the sender.

Message Passing

The message that is sent from a sender to receiver will either use

synchronous or asynchronous communication method. However, when a

message is sent from a sender it needs to be temporarily stored in a memory

area until the receiver node receives the message. The message can be stored

in a memory area that is available at the sender node or at the memory area

which is managed by the operating system. This memory area which is used to

store the message till the receiver node receives it is known as buffer and the

process is known as buffering.

What do you mean by Inter-process communication?

 Inter-process communication refers to the relatively low-level support for

communication between processes in distributed systems, including message-

passing primitives, direct access to the API offered by Internet protocols (socket

programming) and support for multicast communication.

 Write about Remote invocation?

Remote invocation represents the most common communication

paradigm in distributed systems, covering a range of techniques based on a

two - way exchange between communicating entities in a distributed system

and resulting in the calling of a remote operation, procedure or method

Define atomicity

Atomicity refers to a condition when a message is sent to a group and it

is received correctly either by all the members of the group or by none of the

member of the group.

Explain the different types of buffering

 Buffering are used based on the requirement of a process within a

distributed operating system and some of them are given below:

1. Null Buffering: This type of buffering doesn’t use any buffer rather the

send process remains in suspended mode till the receiver node in a position to

receive the message. Once the process of send message starts the receiver

starts the receiving the message and accordingly an acknowledgement is sent

once the message is delivered. The sender node on receipt of

acknowledgement sends a message to the received in order to unblock the

receiver node for further processing.

2. Single Message Buffering: This type of buffering uses a single buffer

either at the receiver node address space in order to ensure that the message

is readily available to the receiver as and when the receiver node is ready to

accept the same. The single message buffer performs better in some situations

as the message is available in the buffer which helps the while system in

reducing the blocking duration at different nodes. The single message buffer

method reduces the delays in communication in comparison with the Null

buffering method of communication.

3. Multiple Message Buffering: The multiple message buffering

communication mechanism is generally used in asynchronous type of

communication in inter process communication within distributed operating

system. The multiple message buffer as shown in the figure below works as a

mail box which is either stored at the receiver’s address space or operating

system address space. A sender executes the send process in order to send a

message and the same is received by the receiver from the mail box as and

when the receiver processes the receive message process.

Multidatagram Messages

The inter-process communication between different nodes within a

distributed operating system is an essential part of a network based

operating system. The messages transferred from a sender to a receiver

in a network is in the form of packets where the data packets correspond

of different information attributes like process identifier, address, sequence

number, structural information and actual data.

 A datagram is a self-sufficient and independent packet of data

associated with a packet switched network. It carries adequate information

to be routed from the source to the destination and the network. Datagrams

provide a connectionless communication service across a packet-switched

network. Every network allows a maximum allowable size of a datagram

that can be transmitted from one node to the other and the same is known

as MTU maximum transfer unit.

In case the size of the message is smaller than the maximum transfer

unit then the datagram is known as “single datagram” message. However,

in case the size of the datagram is more than the maximum transfer unit

then the datagram is divided into smaller datagrams in order to

communicate these multiple datagrams from sender to receiver.

The multiple datagrams communicated from sender to receiver Buffering

and Multidatagram . These multi-datagrams include extra attributes within

a packet which carry the information about the sequence of the datagrams

and mechanism used for fragmenting. This extra information is used at the

receiver end to combine all the multiple datagrams into a single block of

information.

Explain the requirement of encoding and decoding in

communication system.

Encoding: A message transmitted from the source node to destination

node is in the form of single datagram or multi-datagram. The message

delivered at the destination or receiver node should be complete and

correct. Therefore, the structure of the datagram should also be known at

the receiver node in order to understand the complete properties of the

datagram received. The receiver node should have the complete

information related to the datagram available at sender node in order to

maintain the consistency and integrity of data. To ensure this the datagram

to be sent to the receiver node should be converted into a form which can

be transmitted through the communication channel and accordingly on

receipt of the packet the same should be converted back to the original

form at the receiver node. The process of converted the original data

packet into a stream that is compatible with the communication channel is

known as encoding of the message and the process of reverted the

received message to the original message at the receiver node is known

as decoding. The received node encodes the original message and sends

the same through the communication channel or buffer to the receiver

node where the encoded message is decoded to get the original message

back at the receiver node. Different methods are used for encoding and

decoding and the two basic representation of encoding and decoding

process are Tagged representation and untagged representation.

Decoding: In the tagged representation all the details about the object

along with the data value is encoded and then send through any

communication channel or buffer to the receiver. At the receiver node the

encoding done using tagged method reverted back to its original form. The

data packet received by the receiver node is simple to decode and

implement as the information about all the properties of the data packet

along with the data is available. However, in untagged representation

program objects do contain only data which does not make the data packet

delivered at the receiver node as self-explanatory. The receiver node must

have the information about the encoding method or mechanism used at

the sender node in advance to decode the data packet to its original form.

What are the different ways of process addressing?

Explicit Addressing: when the message is explicitly destined for a

process then the message is sent using the explicit mode of addressing. In this

addressing mode, the process-identification (x) along with message (y) is sent

to the receiver node (z). The receiver node (z) will only receive the message

from process-identification (x). If any other message from process-identification

(k) is available it will not be received by the receiver node (z).

Implicit Addressing: when a message is destined for any receiver node

that requires the services of the message then implicit mode of addressing is

used. In this addressing mode, the service-identification (x1) along with

message (y) is intended to be sent to any receiver node where the

serviceidentification(x1) is offered. The implicit mode of addressing allows a

sender node to send the message to more than one node within a network

provided the sender has to name a service rather than a process. This type of

addressing mode is feasible for client-to-server communication where a client

requests for a service and sends the message to all the available servers. The

server in turn will receive the message and treat it as a process. Similarly a

server can also send a message to all clients to access a service and inturn

only clients which are allowed to use the service can receive the message from

the server and acknowledge the same.

FAILURE HANDLING

The messages sent from the sender node are not received at the receiver

node due to different failures which may occur in a distributed operating system.

The scalable and robust design is always pro-active in order to give seamless

services to usersinteracting with a distributed operating system. The failures

that can occur while communicating a message within any two or more nodes

of a network are discussed below.

. Request Message Lost: This problem can occur if the sender node

sends a message and the receiver is down due to breakdown of the

communication link between the sender node and the receiver node. In case

the receiver node is down or gets crashed the communication between the

sender node and the receiver node will not be possible and the same is shown

in figure given below: In case the receiver node receives the message but

crashes prior to sending the acknowledgement will result failure of

communication as the sender node will not receive the acknowledgement. The

scenario of receiver crash after receiving the message is shown in figure given

below:

Node/Computer Crashes: The problem occurs when either a sender node

or the receiver node crashes in the process of communication. The kernel of

the operating system initiates the process of freeing the resources after waiting

for timeout. In case the sender node crashes after sending the message and

the receiver node does not receive the message, the kernel of the operating

system waits for the timeout limit. After the expiry of the timeout the kernel frees

the communication channel and clears the message and the processes

associated with the message. Similarly, in case the receiver node crashes after

sending the acknowledgement to the sender node which in turn has to reply to

the receiver node in order to complete the process and free the resources

acquired by the process at the receiver end. The kernel of the operating system

will initiate the process of freeing the resources acquired by the process after

the timeout period is over.

 The two main cases where a node may crash are given below:

(a) Receiver node crashes after receiving message

b) Sender node crashes after sending the message

GROUP COMMUNICATION:

A group consists of a collection of processes, which perform the task

together in the system. If a message is sent to the group, all the processes

receive it.

Different members of a group can communicate in two ways, one-to-many

communication and one-to-one communication. In the one-to-many

communication, one sender and many receivers are involved. One-to-many

communication involving one sender and many receivers

Various Issues of Group Communication

Design Issues related to Group communication Different types of group

communications can be designed to establish communication among multiple

users of the system. There are a lot of design possibilities used in the designing

of the group communication system. The regular message passing and

primitives based communications are examples of such design possibilities.

Designing of the group communication system is entirely dependent on the

internal organization of a group.

 The types of group communication systems are stated as follows:

 Closed group: This group refers to the group in which outsiders are not

allowed to send messages to the group as a whole.

 Open group: This group refers to the group in which an outsider can

send message to any group involved in the network.

 Peer group: This group refers to the group in which every member of the

group is connected to the other members of that group.

 Hierarchical group: This group refers to the group in which one member

of the group acts as a coordinator of the other members of that group.

Difference between synchronous and asynchronous communication?

In synchronous form of communication, the sending and receiving processes

synchronize at every message. In this case, both send and receive are blocking

operations. Whenever a send is issued the sending process is blocked until the

corresponding receive is issued. Whenever receive is issued, the process

blocks until a message arrives.

 In asynchronous form of communication, the use of the send operation is

non-blocking in that the sending process is allowed to proceed as soon as the

message has been copied to a local buffer and the transmission of the message

proceeds in parallel with the sending process. The receive operation can have

blocking and non-blocking variants.

Unit-III

Define distributed shared memory.

 Distributed shared memory (DSM) is an abstraction used for sharing data

between computers that do not share physical memory. Processes access

DSM by reads and updates to what appears to be ordinary memory within their

address space.

What is dirty read?

 The dirty read problem is caused by the interaction between a read operation

in one transaction and an earlier write operation in another transaction on the

same object.

What is clock skew and clock drift?

 The instantaneous difference between the readings of any two clocks is

called their skew. Clock drift means that they count time at different rates, and

so diverge.

What is clocks drift rate?

A clock’s driftrate is the change in the offset (difference in reading) between

the clock and a nominal perfect reference clock per unit of time measured by

the reference clock.

Define Polling.

A method of continuously checking the buffer status for any messages by the

receiver is followed in non-blocking synchronization method and is known as

polling.

 State ACID properties.

 ACID properties are a) Atomicity, b) Consistency, c) Isolation and d)

Durability

What are the three approaches for concurrency control?

The three approaches for concurrency control are a) Locking, b) Optimistic

concurrency control and c) Timestamp ordering

Explain the Berkley algorithm.

 The Berkley algorithm eliminates readings from faulty clocks. Such clocks

could have a significant adverse effect if an ordinary average was taken so

instead the master takes a fault tolerant average. That is, a subset is chosen of

clocks that do not differ from one another by more than a specified amount, and

the average is taken of readings from only these clocks.

What is mutual exclusion?

A mutual exclusion (mutex) is a program object that prevents simultaneous

access to a shared resource. This concept is used in concurrent programming

with a critical section, a piece of code in which processes or threads access a

shared resource.

Deadlocks

What do you mean by Deadlocks ?

 A process request for some resources. If the resources are not available at

that time , the process enters a waiting state . The resources was held by other

processes .The waiting process may never able to get the resource. This

situation is called deadlock.

What are the necessary conditions for deadlocks?

• Mutual exclusion: only one process at a time can use a resource. If another

process requests the same resource, the requesting process must wait until the

resource is released.

• Hold and wait: Processes currently holding resources granted earlier , can

request for new resources , that are currently held by other. 3 • No preemption:

a resource can be released by the process holding it only after that process has

competed its task.

 • Circular wait: The circular chain of two or more processes must exist such

that each of them is waiting for a resource held by next member.

Explain the concept of Deadlock recovery

• Process termination

• Resource pre-emption

• Check point / roll back mechanism

Process termination

• Abort all deadlocked process

 • Successively abort each deadlocked process until the deadlock no longer

exists.

Resource pre-emption

 Roll back A process that has a resource pre-empted from it must be roll back

to the point to its acquiring of that resource.

Total roll back – Abort the process and restart it.

What is safe state?

 state is safe if the system can allocate resources to each process (up to its

maximum) in some order and still avoid a deadlock. More formally, a system is

in a safe state only if there exists a safe sequence.

What is a phantom deadlock?

A deadlock that is ‘detected’ but is not really a deadlock is called a phantom

deadlock.

What is wait-for-graph?

A wait-for graph can be used to represent the waiting relationships between

current transactions. In a wait-for graph the nodes represent transactions and

the edges represent waitfor relationships between transactions.

What are the phases of transactions?

a) Working phase,

b) b) Validation phase

c) c) Update phase.

 Define Starvation.

The prevention of a transaction ever being able to commit is called starvation.

GENERAL ARCHITECTURE OF THE DSM SYSTEM

The general architecture of distributed shared memory system is the

representation and arrangement of various components that constitute the

working paradigm used by different processes on different nodes to

communicate by sharing a common virtual address space to fulfill services and

operations.

The distributed shared memory can be built by interconnecting or organizing

Introduction to DSM various nodes or simply systems in a distributed network

arrangement. Each node has one or more processing units that are CPU and

associated local memory.

All the constituent nodes or systems are connected with one another by a

dedicated communication link which in turn is connected to a high-speed

communication network. The distributed shared memory in contrast to physical

memory is tightly coupled with the processor and can also be looked like a

virtual address space build from various individual memories coupled with

various connected processors. This shared memory acts like a global address

space for all the processors of the distributed network and this address space

can be as large as the collection of all the individual memory spaces that is local

to each processor in each node.

A memory-mapping manager that is in each node of the architecture maps

local memory onto the shared memory to constitute a virtual address space,

which is global and accessible to all the connected nodes. This virtual memory

space is partitioned into various blocks to facilitate better mapping. In order to

overcome the latency issues associated with multiple shared accesses, the

local memory of each node is also treated as a big cache memory of the shared

address space accessible to each individual processor of a node. This local

cache is mapped using the memory-mapping manager routine.

The access strategy of DSM architecture works when a process emerging

from any node of the network tries to access some data from the shared

memory. The request of data access is accepted by memory-mapping manager

routine and the data requested is first searched on the cache that is on the local

memory. If the data is found on the local address space the access is fulfilled

without any latency.

 However, if the data is not available on the local cache then the memory-

mapping manager triggers a network fault and the control is passed to the

underlying operating system. The operating system generates a request to the

desired node that is the node whose local memory contains the desired data.

The data found is later transferred to the requester nodes cache. This pattern

of request-identify-retrieve or transfer is performed whenever required to fulfill

access operations. However, this underlying architectural shift is not visible to

user processes as for them the memory is like a shared global address space.

The caching of copies of data on the local memory avoids or reduces the access

latency.

DESIGN AND IMPLEMENTATION ISSUES OF DSM

There are various issues and challenges associated with the design and

implementation of a distributed shared memory system. The most prominent

issues and challenges are mentioned as under:

 Granularity: Whenever a request for data transfer/access on the DSMS is

made, the extent of the data quota that can be standardized to be accessed or

moved across the processors of various nodes on the network if there is

network block fault. The selection of a particular standardized unit to be

designated as a memory/data block is an important component in DSMS design

Structure of Shared-Memory Space:

The structure of the data block shared on the network among various nodes

typically is influenced by the application type that DSMS is expected to support.

 Memory Coherence and Access Synchronization:

 When similar copies of the data are moved across the shared memory of

DSMS. The coherence or the persistence of the data across different memories

remains an issue because, whenever a modification is made it is necessary to

update all the copies to ensure consistency in DSM. In DSMS, there can be

concurrent data access requests from several processes in order to address

consistent data accessibility over the DSMS, the access mechanism needs to

be synchronized.

Data Location and Access: The mechanism of locating, retrieving and

transferring of requested data in DSM by user process needs to be properly

designed to respond to block faults effectively by availing consistent data image.

Replacement Strategy: In the situation like whole local cache is fully occupied

and the process has to respond to any data transfer request generated by any

node on DSMS. If the data requested is not the one that is currently in the local

cache, the requested data needs to be retrieved from DSM and brought into

local cache by replacing previously held content. Therefore, the replacement of

the cached content in this replacement approach is a challenging issue in

DSMS.

 Thrashing: This is the problem that emerges in DSMS when two processes

from two different nodes request the same data block. In this situation the data

block is moved back and forth among these competing processes quickly, the

quickness is as fast as it seems no data transfer was carried out.

 Heterogeneity: If the nodes and their underlying architecture used to design

DSMS are homogeneous then no heterogeneity issues can emerge. However,

if the underlying environment is different then the heterogeneity takes place.

The DSMS architecture design should facilitate positive and productive data

communication when DSMS is heterogeneous in nature.

Parameters influencing Block Size Selection

 Paging overhead: The feature of “locality of reference” attributed with

shared memory programs to perform a data transactions on DSMS, the process

is expected to access a larger component on the shared address space within

a small quantum of time. This paging overhead associated to access large

memory is comparatively less than the paging overhead required for small block

size.

 Directory Size:In order to maintain the log to record all the data transactions

on the DSMS and the overhead associated with it, the larger block size is

preferred in contrast to small block size. Small block size means more data

transfers therefore, more log maintenance in comparison to large block size

with fewer transfers and less log maintenance on DSMS. Thrashing: As

many processes may be concurrently accessing the same data reference

present in a particular data block. This competing process from different nodes

may be trying to update the data instance causes an exponential increase in

data transfers over the network stalling the program execution efficiency. This

current updating requests made by processes on the same data block causes

thrashing. More data block has more changes of more thrashing overheads in

comparison to small data blocks as small data may result in fewer data

operations.

 False Sharing: When two different processes from separate nodes requests

to access two different data instances residing on the same data block causes

no data to be transferred across the network have a direct impact on the

productive aspect of DSMS. More data block size has more chances for false

sharing in comparison to small data block size.

STRUCTURE OF SHARED MEMORY SPACE

The commonly used approach to build a shared memory space of a DSM

system are:-

1. No Structuring

2. 2. Structuring by data type

3. 3. Structuring as a database

1. No Structuring: In most of the DSM systems the shared memory space

is not structured but is simply an arrangement of liner array of words. The

main advantage of this unstructured DSM space is its connivance in choosing

any suitable page size to represent a particular data block. When there is no

fixed structure for page size it is, therefore, easy to implement in designing

DSMS.

 2. Structuring by data type: In this approach, the shared memory layout is

structured and the memory space is organized either as a collection of

objects or as a collection of variables in the source language. Therefore, the

granularity of the unit is also defined either as an object or a variable. Since

the behavior of object or variable is not fixed but is varying in nature and

depends on the fundamental of application and its underlying language

manifestations therefore, DSM systems use variable grain size. This

behavior or dependency of grain size on the application nature creates

overheads in the design and implementation of DSMS.

 3. Structuring as a Database: In this particular approach of designing a

DSMS, the shared memory is well structured like a database. The shared

space in this approach is organized into ordered structures called as tuple

space. Tuples are commonly designed as a row/column format. The data

within the tuple space is accessed and addressed by the content that the

tuples are holding. In order to perform any transaction over the network, the

processes select the tuples by directly targeting the tuples by specifyingthe

number of their fields and their values or types. Apart from tuple organization,

the access mechanism is non-transparent which in contrast is transparent in

other DSMS approaches.

CONSISTENCY MODELS

The consistency model describes the degree of consistency that is being

maintained for the successful and correct data access. Consistency models are

designed on the basis of certain protocols that the competing processes must

follow to ensure consistency of the share data instances in DSMS. To provide

consistent data to a different application in DSMS several approaches were

considered to design various consistency models among them the most popular

ones are discussed below:

 Strict Consistency Model: The consistency models in real essence enforce

“principle of coherence” on the DSMS to grant mechanism for consistent data.

Strict Consistency model is considered as the strongest model approach that

strictly adheres to “principle of coherence”. The DSMS is said to be a strict

consistency model if the process intended to read any variable from some data

block on shared memory, the data variable to be accessed is the latest copy of

the data variable written in shared memory. In a general context, it can be said

that if there is any kind of update operation on any data variable that the latest

copy of the data is instantly updated at all places of its existence. The

implementation of strict consistency model requires the absolute global clock

to synchronize the processes, variables or objects with persistence.

Sequential Consistency Model: It is proposed by Lamport is the design

mechanism of shared memory where all the processes of the network has got

a similar order to access the shared memory to execute different operations.

However, there is no restriction on interleaving among the different access

operations like read, write. Let’s consider that there are three processes to

perform read, write and read operations. The DSMS that supports the

implementation of sequential consistency model ensures that no operation on

the shared memory that lasts till other previous operation is completed.

Sequential consistent memory provides one-copy/single copy semantics as all

the processing sharing the memory location will encounter the same data

contents stored sequentially on DSMS.

 Causal Consistency Model: It is proposed by Hutto and Ahamad represents

a weakening of sequential consistency approach that it makes a refinement

between events that are possibly causally related and those that are most

certainly not. In other words, causal consistency represents that all the

execution are the same as if causally-related read/write operations were

executed in an order that reflects their causality. All concurrent operations may

be seen in different orders. Memory reference operations that are not potentially

causally related may be seen by different processes in a different order. Any

two memory reference can be treated as casual if the first processes get

influenced by another process in any way. A shared memory system is,

therefore, said to support the causal consistency model if all the specific

operation on shared memory are potentially causally related and are seen by

all other processes in the same order. The implementation of Casual

Consistency Model takes into account the dependability of processed with each

other which is achieved by maintaining a dependency graph for shared

operations. Pipelined Random-Access Memory Consistency Model: It is

proposed by Lipton and Sandberg provides again a weaker consistency

semantics and is also known as FIFO consistency. All the processes see that

all the write operation order made by some process looks different to another

process only ensures that all write operations performed by a single process

are seen by all other processes in the order in which they were performed as if

all the write operations performed by a single process are in a pipeline. Write

operations performed by different processes may be seen by different

processes in different orders”. In this model, the consistency is preliminarily

posed on write operations.

Weak Consistency Model: It is proposed by Dubois et al. is the consistency

approach where the “Synchronization accesses (accesses required to perform

synchronization operations) are sequentially consistent. Before synchronization

access can be performed, all previous regular data accesses must be

completed. Before regular data access can be performed, all previous

synchronization accesses must be completed. This essentially leaves the

problem of consistency up to the programmer. The memory will only be

consistent immediately after a synchronization operation”. The write operations

made by some processes is not necessary to be shown to another process. In

order to fulfill the operational mechanism of weak consistency model following

recommendations must be adopted.

 All accesses made to synchronization variables must be performed under

sequential consistency semantics.

 All the necessary update or write operations on some data variable in shared

memory must be completed before access to synchronization variable is

permitted. All operations on the synchronization variable must be furnished

before making access to any non-synchronized variable.

Release Consistency Model: Release consistency is essentially the same

as weak consistency, but synchronization accesses must only be processor

consistent with respect to each other. Synchronization operations are broken

down into acquiring and release operations. All pending acquires (e.g., a lock

operation) must be done before a release (e.g., an unlock operation) is done.

Local dependencies within the same processor must still be respected. Release

consistency is a further relaxation of weak consistency without a significant loss

of coherence.

Entry Consistency Model: Like other variants of release consistency model,

it requires the programmer (or compiler) to use acquires and release at the start

and end of each critical section, respectively. However, unlike release

consistency, entry consistency requires each ordinary shared data item to be

associated with some synchronization variable, such as a lock or barrier. If it is

desired that elements of an array be accessed independently in parallel, then

different array elements must be associated with different locks. When an

acquisition is done on a synchronization variable, only those data guarded by

that synchronization variable are made consistent.

 Processor Consistency Model: Writes issued by a processor are observed

in the same order in which they were issued. However, the order in which writes

from two processors occur, as observed by themselves or a third processor,

need not be identical. That is, two simultaneous reads of the same location from

different processors may yield different results. General Consistency Model:

A system supports general consistency if all the copies of a memory location

eventually contain the same data when all the writes issued by every processor

have completed.

DISCUSS ABOUT THRASHING

Thrashing is said to occur when the system spends a large amount of time

transferring shared data blocks from one node to another.

Various conditions in DSMS that can result in page faults or may cause

thrashing are discussed below: 1. Interleaved data access by a processor on

multiple nodes results into the movement of data block back and forth across

these nodes. 2. Invalidation of data blocks with read-only permission just after

their replication in other nodes.

Strategies to overcome the overhead caused by thrashing in DSMS

1. Implementation of an efficient local replacement algorithm.

 2. Implementation of application-controlled locks to lock the data block from

being accessed by other nodes for a short duration.

 3. Locking the data block associated/accessed by some node in DSMS by

barring another node to accesses or take away the data block until a specific

or designated time period completes.

4. By modifying or training the cache coherence algorithm in DSMS as per the

context related to a particular data block. In order works, it means that there is

a need to have separate coherence algorithm/protocols for each data block

based on its characteristics to reduce the overheads caused by thrashing.

ADVANTAGES OF DSM

Hide data movement and provide a simpler abstraction for sharing data.

Programmers don’t need to worry about memory transfers between machines

like when using the message passing model.

 Easier to implement than RPC since the address space is the same Nodes

implementing data blocks using sequential programming constructs/ paradigms

directly run on DSMS.

 In DSMS complex data structures or data blocks are migrated across nodes

on network by simply passing reference by simplifying the algorithmic approach

for distributed applications.

 The principle of “locality of reference” facilities the movement the entire page

containing the data requested rather than just transferring a small piece of data.

 DSMS is comparatively cheaper architectural design approach than

multiprocessor systems to perform parallel executions.

In DSMS the much larger virtual memory space is built by combining all the

local memory associated with each local processor or node in DSMS. The

formation of large shared memory space helps to reduce or overcome the

overhead caused by disk latency like swapping in case of traditional distributed

systems.

 In DSMS large number of heterogeneous nodes can be connected to form

DSMS network therefore, much larger shared-memory system accessed by

nodes dynamically. While as in case of multiprocessor systems where main

memory is accessed via a common bus topology limiting the size of the

multiprocessor system.

 The programs developed to share or access shared memory space in

multiprocessors can run on DSM systems easily.

 The migration of data blocks from one node to another node on DSMS is

comparatively easy to handle as both the processors/processes are accessing

the same shared address/ memory space.

SYNCHRONIZATION The basic building blocks of a distributed operating

system are cooperation, exchange of data between different nodes of a

distributed operating system. In order to exchange data between any two nodes,

the computer system at the destination should accept the data that has been

sent by a sender which is possible only when synchronization between the

sender and receiver is implemented. The process of synchronization gives the

details of the timing between sender and receiver which helps the sender and

receiver to communicate.

The process of synchronization can be categorized in two basic categories

like blocking and non-blocking synchronization

Blocking: In every communication process a message is passed from a sender

to a receiver. In the blocking synchronization method the sender after sending

the message will wait for the acknowledgement from the receiver and during

the wait period the sender will be blocked till acknowledgement is received.

Similarly, the receiver after sending the acknowledgement will wait for a

message from the sender in order to proceed further.

Non-Blocking: In the non-blocking synchronization method the sender after

sending the message is not blocked and the sender will not wait for the

acknowledgement from the receiver in order to proceed further with execution

Discuss about mutual Exclusion

A mutual exclusion (mutex) is a program object that prevents

simultaneous access to a shared resource. This concept is used in concurrent

programming with a critical section, a piece of code in which processes or

threads access a shared resource.

In distributed systems, mutual exclusion is implemented using centralized,

decentralized and token ring algorithms.

1 Centralized Algorithm

In a centralized algorithm, one of the many processes is elected as a

coordinator. A coordinator can be a machine with the highest network address.

When a process wants to enter a critical region, it sends a request message to

the coordinator. The message states the critical region that the process wants

to enter and asks for permission. The coordinator replies with a message

granting permission, if no other process is using the critical region in question

currently.

However, a centralized algorithm also has certain drawbacks. It follows a

centralized approach that has a single point of failure, i.e. the coordinator. If the

processes block after making a request, then they cannot distinguish between

a dead coordinator and permission denied state, as no message is sent in both

the cases. A single coordinator can also cause performance bottleneck in large

systems.

2. Distributed Algorithm

To avoid a single point of failure, distributed algorithms were developed, such

as Ricart and Agrawala. This algorithm requires a complete ordering of the

events in the system. A process wanting to enter a critical region sends a

message containing its process number and current time to all the other

processes, including itself. The messages sent are acknowledged either singly

or using group communication.

This algorithm is associated with another problem that it must use either a

group communication or every process must maintain a group membership list.

The group membership list must include the processes entering a group, the

processes leaving the group and the processes that have crashed.

2. Token Ring Algorithm

In a token ring algorithm, there is a bus network with unordered processes.

In software, a logical ring is created and each process is assigned a space on

the ring.

However, there are certain problems associated with this algorithm too. The

token must be regenerated if it is lost. Even before that, it is difficult to detect

that the token has been lost because the time of successive appearances of

the token on the network is unbounded. Furthermore, it is not necessary that

the token is lost if it hasn’t been spotted on the network for a long time. This

can also mean that some process is still using it.

Discuss about Election Algorithms

Most distributed algorithms require one process to act as a coordinator,

distributor or sequencer. Any process can take up this responsibility, but some

algorithms need to determine or elect the coordinator process. If every process

is the same, with no distinguishing characteristics, there is no way to select a

process. Therefore, it is assumed that every process has a unique number or

ID, such as the network address. Generally, the election algorithms attempt to

trace the process with the highest process number and designate it as the

coordinator. It is also assumed that each process knows the process ID of every

other process, but they do not know which of the processes are active (currently

up) and which are currently down. The aim of any election algorithm is to elect

the new coordinator and make all the processes agree to it. Various election

algorithms are as follows:

1. The bully algorithm

2. The ring algorithm

Bully Algorithm

In this algorithm, a process initiates an election when it fails to receive

response from another process. The election is held by a process, P by

performing the steps as follows:

1. An ELECTION message is sent to all the processes with higher process

numbers than P.

2. 2. If no process sends a response, P wins the election and becomes the

coordinator.

3. 3. If a higher numbered process answers, it takes over the job from P.

When a higher-numbered process receives an ELECTION message from

a lower-numbered process, it sends an OK message indicating that it is alive

and will take over. The receiver then holds an election in a similar way as

explained above. Ultimately, all the processes give up, and one process that is

left is the new coordinator. The new coordinator sends a message to all the

other processes announcing its victory and telling them to start immediately.

If a process that was previously down comes back, it holds an election and

if it is the highest-numbered process running, it will win and become the

coordinator. Thus, the algorithm gets its name from the fact that biggest-

numbered process wins and bullies the smaller ones; hence the name, bully

algorithm.

Figure 9.9 shows the working of a bully algorithm.

Fig99

In Figure 9.9, there are eight processes (0 to 7) in a group. Process 7 was

the coordinator but it has crashed and therefore, a new coordinator needs to be

elected. Process 4 is the first one to notice that the coordinator has failed.

Therefore, it sends an ELECTION message to all the other process, higher than

it, i.e. to processes 5, 6 and 7, as shown in Figure 9.9 (a). Since process 7 was

previously dead, it does not respond, while processes 5 and 6 send an OK

message, as shown in Figure 9.9 (b). As soon as process 4 gets a response, it

knows that its job is over, so it sits back and waits for the coordinator to be

elected. As shown in NOTES Self-Instructional Material 107 Figure 9.9 (c), both

processes 5 and 6 hold the election and send an ELECTION Synchronization

message to higher processes, i.e. process 5 sends a message to processes 6

and 7, and process 6 sends a message to process 7. In Figure 9.9 (d), process

6 informs process 5 that it will take over and process 6 already knows that

process 7 is dead as it does not receives a response from process 7. Now,

process 6 knows that it is the winner and when it is ready to take over, it sends

a coordinator message to all the other processes. When process 4 receives the

coordinator message, it can continue with its operation, which it was previously

trying to accomplish. In case, process 7 ever starts again, it will send a

coordinator message to all others.

Ring Algorithm

A ring algorithm uses a ring structure without a token and assumes that each

process knows its successor. Also, the processes are logically or physically

ordered. When a process realizes that the coordinator is dead, it builds an

election message, which contains its own process number and sends the

message to its successor process. In case the successor is down, the sender

process keeps on skipping the processes till it finds a running process. The

sender keeps on adding its own process number to the list in the message, at

every step.

In a matter of time, the initiating process gets back the message and it

recognizes this event when it sees its own process number in the message. At

this point of time, a coordinator message is circulated to inform every one of the

new coordinator. When the coordinator message has been circulated once, it

is discarded and the processes return to their work. Figure 9.10 shows the ring

election algorithm.

Fig9.10

In Figure 9.10, processes 2 and 5 simultaneously discover that the

coordinator has crashed. Therefore, both these processes build an ELECTION

message each, with their own process numbers and circulate it. In the end, both

the messages will go round the ring and processes 2 and 5 will convert them

into coordinator messages. Thus, in this way an extra message will circulate,

which is of no harm. It just uses some extra bandwidth.

Explain about Distributed in deadlock

 Deadlocks in distributed systems are similar to deadlocks in single-

processor systems. There are two kinds of distributed deadlocks:

communication deadlocks and resource deadlocks. A communication deadlock

is a situation in which each member process is trying to communicate with

another member process but is unable to communicate as they both wait for

each other to answer a query. Resource deadlock is a situation in which

member processes are arguing over exclusive access to I/O devices, files,

locks or other resources. The various strategies that are used for handling

deadlocks in distributed systems can be classified into four major groups:

deadlock detection, prevention and avoidance.. Deadlock detection and

recovery techniques allow deadlocks to occur and then apply certain methods

to recover from the deadlock. These techniques are very difficult to implement.

Due to the presence of atomic transactions, deadlock prevention is also

possible in distributed systems. Finally, the deadlock avoidance techniques

acquire information in advance about which resource a process will claim at

which stage of execution. Distributed operating system can assume that

deadlock will never happen or rarely occur and fully ignore it.

Distributed Deadlock Detection

Since it is very difficult to find out the methods for preventing or avoiding

distributed deadlocks, researchers have started dealing in detecting the

occurrence of deadlocks in distributed systems. Deadlock detection detects the

state of the system to determine whether a deadlock has occurred or not. It also

helps processes to recover from the deadlock condition. The presence of

atomic transactions in some distributed systems make a major conceptual

difference. If a deadlock is detected in a conventional operating system, you

can break the deadlock by killing one or more processes. When a deadlock is

detected in a system, which is based on atomic transactions, then abort all the

deadlocked processes. This means, one of the deadlocked processes is

aborted and it is verified whether the deadlock is over or not. This procedure is

continued until a system reaches safe state

Centralized deadlock detection

 In a centralized deadlock detection algorithm, each machine has a resource

graph for its own processes and resources and the deadlock detection

coordinator maintains the resource graph for the entire system. When the

coordinator detects a cycle, it destroys one process in order to break the

deadlock. In distributed systems, due to delay in information many deadlock

algorithms generate false deadlocks.

UNIT-IV

What is File Sharing?

When two or more users share the same file at the same time, it is called file

sharing.

 Define Naming Service.

It refers to the process of mapping user-defined file names with transparency.

 What is Static map?

It is a very simple mechanism, which is used where the location of file or

directory does not change.

. What is the role of replication in distributed systems?

 Replication is defined as the maintenance of copies of data at multiple

computers. It is a key to the effectiveness of distributed systems in that it can

provide enhanced performance, high availability and fault tolerance.

What are the two basic file system used in distributed system?

 • The Sun Network File System, NFS.

 • The Andrew File System, AFS.

 What are the file system modules?

 Directory module: relates file names to file IDs.

 File module: relates file IDs to particular files.

 Access control module: Check permission for operation requested.

 File access module: reads or writes file data or attributes.

 Block module: accesses and allocates disk blocks.

 Device module: performs disk I/O and buffering.

Write the Characteristics of file systems?

File systems are responsible for the organization, storage, retrieval, naming,

sharing and protection of files. They provide a programming interface that

characterizes the file abstraction, freeing programmers from concern with the

details of storage allocation and layout.

What are the different forms of transparency are partially or wholly

addressed by current file services?

 Access transparency

 Location transparency

 Mobility transparency

 Performance transparency

 Scaling transparency

Define File service architecture of AFS?

An architecture that offers a clear separation of the main concerns in

providing access to files is obtained by structuring the file service as three

components – a flat file service, a directory service and a client module.

What is Andrew File System?

 Andrew is a distributed computing environment developed at Carnegie

Mellon University (CMU) for use as a campus computing and information

system. The design of the Andrew File System (henceforth abbreviated AFS)

reflects an intention to support information sharing on a large scale by

minimizing client-server communication.

What is caching?

When a client requests a name lookup, the name resolution software consults

its cache. If it holds a recent result from a previous lookup for the name, it

returns it to the client; otherwise, it sets about finding it from a server. That

server, in turn, may return data cached from other servers.

What are the two types of naming services in a distributed system? .

 1. Multi-level mapping

2. Multi-valued mapping

List out the three ways to create file replication.

1. Explicit File Replication

2. Lazy File Replication

 3. Group Communication Based Replicas

What is Fault tolerance?

The quality of a system to continue functioning even when some of its

components have failed.

Define Atomicity.

 It is a property of atomic transaction that ensures that each transaction

either occurs completely or not at all.

Define Consistency. This means that if some invariants apply to a system

before a transaction, they must hold true even after the transaction is complete.

Write a note on File Models

The basic file model is based on the structure used in a file system within a

distributed file sharing environment and the same are categorized as structured

and unstructured files. The second categorization of file models within a

distributed file sharing environment is based on modifiability are mutable and

immutable files.

(a) Structured File System: In this file system, the details of a file are known

to the storage server where the files are stored. Every file in the system is a

collection of records which are in an ordered sequence. The record is the

lower most unit is this file system which can vary in size from one file to the

other. The sharing of files in this file system are not as simple as

unstructured file system. The structured file system is used using two

methods as indexed and non-indexed method. The indexed file system

stores the records in an indexed sequence where any record can be

accessed by specifying the value of one or more key field and the same can

be addressed by giving the values of the key fields. In structured file system

method the records of a file are maintained using structures and one of the

commonly used architecture is B-Tree. However, in non-indexed file system

a record is traversed by mentioning the position of a record in a file.

(b) Unstructured File System:

(c) This file system is the simplest form of a file system where the details

about a sub structure are not known to the storing server where the files are

stored. The distributed operating system kernel does not require to know

about the sub structures of or details of file and data stored on the storage

servers which gives applications the access to understand the details of the

sub structures of the data stored. Some of the examples where this method

of storage was used are MS-DOS and UNIX.

(d) Another categorization of file models based on modifiability are given

below:

(e) (a) Mutable Files: Once a file is stored on a storage server, the

possibility of modifying the contents of a file is required. When the content

of a file are modified the file is not re-created rather the existing file is

updated by overwriting the existing file with a new file. This method is known

as mutable file method. This method is commonly used in most of the

operating system at present as the method reduces the overheads required

to manage the number of in case every modification request re-creates a

file again and again.

(f) (b) Immutable Files: In this file system the contents are modified by re-

creating a file. In this method every modification requests will create a new

file and the information about the previous versions of a file is stored as

history of the file modified. A separate subroutine is used for managing the

versions of a file which helps the operating system to find out the recent

updated file. This increases the load on the operating system and increase

the quantum of storage space required to store a file.

Write a note on File Accessing Models

The file accessing modes are the methods of accessing a file within a

distributed file sharing environment and the list of the generally used file

accessing modes is given below:

(a) Accessing Remote Files: In order to access a file in a distributed file

sharing environment different modes are used one of them is access remote

files method where a file is accessed remotely from any location which is

having access to the network.

 The two different methods of Access Remote Files are given below:

(i) Remote Service model:

In this method of file access the client requests for file access and the file

is sent to server. The server processes the client’s request and the output is

sent to client. The file is not sent to the client node rather the file is delivered

to the server. The server processes all the requests and the output is deliver

in the form of a message to the client. The communication between the client

and the server is in the form of data packets. In this file access mode method

the communication overheads & message overheads are more while

communicating a request from a client to server and while communicating

the output from a server to the client. The protocols for communication and

file access need to be designed appropriately in order to minimize the

overheads generated by communication and messages.

(ii) Data caching model: This model of file access mode helps in

reducing the load of communication channel in comparison with Remote

Service Model method of file access. In this model when a client has a file

access requests, the availability of file is first checked locally on the node and

if the file is not available locally then a copy of the file from the server is stored

locally on the client node. The client node processes the files access request

locally and generates the output from the locally stored file. The file is stored

locally in the cache of the client node.

(b) Unit of Data Transfer:

 The data caching model of file access mode a copy of the file from the

server is stored locally on the client node cache. However, the size of the

data packet transferred needs to be fixed in the design of the operating

system. In this file access mode the categorization is done based on the unit

of the size transferred and the same are given below: (i) File Level Transfer

Model: In this file access mode type when a client requests for access to a

file from the server, the complete file is transferred from the server to the

client. This method reduces the file access at the server node and improves

the performance and scalability of the distributed file sharing environment.

 (ii) Block Level Transfer Model:

 In this file access mode type when a client requests for access to a file from

the server, the file blocks are copied from the server to the client. The file

blocks are arranged in contiguous blocks where the size of the file block is

fixed.

(iii) Byte Level Transfer Model:

 In this file access mode type when a client requests for access to a file from

the server, the data transfer happens in bytes which are copied from the

server to the client. This file access method is more flexible in comparison

with the previous methods of file access. However, the cache management

becomes more difficult as the number of bytes in a file are more in number.

 (iv) Record Level Transfer Model: , This file access mode will transfer the

data of file in unit of records where a complete record will be transferred from

the server node to the requesting node. This method of transfer is more

suitable for structured file access method.

Write a note on File Replication

In a distributed file system, file replication is broadly used. File replication

improves the availability of files to clients as clients can access the replica

of the file stored at the nearest site in the network.

File replication is also important in case of system failures. Replicas of

files are stored on the machines in which failure does not occur. These

machines are linked with other replicas. When any of the machines on

which the copy of a file is stored, crashes, then the machine, which

contains another copy of this file, continues the processing.

 File replication can be created in the following three ways:

Explicit file replication: A programmer controls the complete process of the

replication of files. To create multiple copies of a file, a programmer

needs the permission of the directory server. This directory server

associates the address of each copy of file along with the file name.

 Lazy file replication:

 In a distributed system, the server controls the replication of files.In this type

of replication, a programmer creates the copy of a file on the server. After

the copy is created on the server, the server further creates multiple

copies of the same file on other servers also. The server creates

multiple copies only when the system is not heavily loaded.

 Group communication based replicas:The system calls are sent to all the

servers that create multiple copies at the same time when the original was

made.

File replication also leads to a consistency problem. Any update in one replica

is reflected in all other replicas. A distributed operating system uses update

protocol algorithms in order to ensure consistency between the replicas. The

following are the two most commonly used protocols:

 Primary copy replication algorithm: According to this protocol, updated

replica is sent to the primary server that holds the master copy. This primary

server makes some permanent changes in the master copy and issues

commands to the secondary servers. These secondary servers hold the

replicas of this file to make necessary changes.

Voting: According to this protocol, clients require permission from multiple

servers that hold the replicas before performing any I/O operation, such as

read or write on any of the replica. The file replication scheme improves the

load-balancing feature of the distributed operating system: for example, if two

processes require the same information, then one of the two processes can

be sent to some other client machine to continue processing by using the

replica of that information.

Discuss about Directory Structure

Directories are considered as symbolic tables of files that store all the

related information about the file it holds along with the content. This

information includes file attributes, location type and access privileges. They

are also known as containers for files. A directory is itself a file that is owned

by the distributed operating system.

The following operations can be performed on different entries in a directory:

Searching a file:

 Whenever a file is referenced, the directory must search for the related entry.

 Create a file: An entry for every newly created file needs to be added in the

directory.

 Delete a file: Whenever a file is deleted, related entry should be removed from

the directory.

 List directory: List of files in a directory is shown whenever a user requests

for it.

 Rename a file: The name of the file should be changeable when the use of

file changes or its location changes.

 Update directory: Whenever a file attribute changes, its corresponding entry

needs to be updated. Based on these entries and its operations, the structure

of directories can be organized in different ways.

 The three most common structures for organizing a directory are as

follows:

 Single-level structure

 Two-level structure

 Hierarchical structure

Discuss the fault tolerant design techniques

Redundancy

Redundancy is often used to build fault-tolerant systems. Take the case of a

passenger aero plane which typically has more than one engine. In the event

of an engine failure, the other takes over. In other words, a redundant engine

is installed to be used in the event of primary engine failure.

Physical redundancy

This type of redundancy, where more than one instances of a critical system

is deployed in known as physical redundancy. Patterns exist that are employed

to address fault tolerance using physical redundancy.

Temporal Redundancy

It involves recording a series of events that happen in a system, and playing

them back in case of a failure.. Temporal redundancy is used in scenarios

where transient faults or sporadic faults occur.

Information redundancy

 In this case, extra data is added to the transmission which helps in detecting

and correcting errors at the receivers end.

Fault Categories

Faults can be categorized into the following types:

Permanent: A permanent fault is one that remains until the defective part is

changed. As an example, a failure in a database server due to a hard disk fault

remains uncorrected until the bad disk is replaced with a good one followed by

restoration of data.

 Transient: A transient fault happens once and then does not reappear; for

example, a cellular phone fails to detect the mobile network in places such as

tunnels and underground railway systems, but once the person comes out in

the open, the system re-establishes connection with the nearest base station.

Sporadic:

 As the term suggests, these types of faults occur on and off.

Failure Models

In accordance with a specific failure classification scheme, failures can be

categorized by their types into crash failures, omission failures, timing failures,

response failures and arbitrary failures.

Crash Failure: This occurs when a server stops due to a system malfunction.

Before the crash happened, the server was functioning correctly. A server

program termination by the operating system due to an illegal memory address

access would be a typical example of a crash. To recover from such situations,

the server program needs to be restarted.

Omission Failure: Such failure takes places when a server does not send its

response to a request. It might very well be the case that the server never

received the request to start with. It might also be due to a transient failure in

the communication media, which resulted in the total loss of network traffic. An

omission failure can also occur in a situation when the server has failed to

transmit the response after processing the request.

Timing Failures: These are noticed when a system is not able to respond to

the requestor within a predefined time period.

Response Failures: These are more severe forms of failures. When a system

responds incorrectly to a request.

Arbitrary Failures: These are the most serious forms of failures. These failures

are also known as Byzantine failures. Byzantine refers to the Byzantine

General’s problem, in which a number of generals separated by distances need

to decide upon whether to attack the enemy or retreat.

Discuss about Atomic design principles.

Atomic transactions provide synchronization at a higher level of abstraction.

Transaction Model

 A transaction model consists of some processes capable of failing at random.

The communication is unreliable in the sense that the messages can be lost.

Stable storage

In the transaction model, a stable storage is required that can survive any

crashes except for calamities, such as floods and earthquakes. A pair of

ordinary disks can be used to implement a stable storage.

Transaction primitives

 Special primitives are required for programming transactions. These primitives

must either be supplied by the operating system or by the language run-time

system. Some of the examples of primitives are as follows:

BEGIN_TRANSACTION: It marks the start of a transaction.

END_TRANSACTION: It terminates a transaction and tries to commit it.

ABORT_TRANSACTION: It is used to kill a transaction and restore the previous

values.

READ: It is used to read data from a file or object.

WRITE: It is used to write data from a file or object.

Explain the properties of Transactions.

 Atomic: It ensures that each transaction either occurs completely or not at all.

Also, if at all it happens, it should occur in a single indivisible action. This means

that other processes must not be able to view the intermediate states of the

transaction.

 Consistent: It says that a system should be consistent before and after a

transaction. This means that if some invariants apply to a system before

transaction, they must hold true even after the transaction is complete: for

example, in a banking system, the law of conservation of money must always

hold true, i.e. money should not be lost during a transaction.

Isolated: This means that transactions should seem to be occuring serially

independent of each other. If two transactions are running simultaneously to

each other and to the other proceses, the final result should seem as if the

transactions occurred sequentially.

Durable: It specifies that if a transaction has been committed, no matter what,

the transaction proceeds forward and its results become permanent. Thus, the

results cannot be undone, once a transaction has been committed.

UNIT-V

What are the key principles of security?

 The key principle of security is the following:

1. Make sure you have the latest security updates & patches

2. Install anti-virus software

3. Install anti-spyware software

4. Use a personal firewall

5. Password advice

What is the difference between a mono-alphabet cipher and a

polyalphabetic cipher?

 Mono-alphabetic cipher is a mono-alphabetic cipher is a substitution cipher in

which the cipher alphabet is fixed through the encryption process. All of the

substitution ciphers we have seen prior to this handout are mono-alphabetic;

these ciphers are highly susceptible to frequency analysis.

Polyalphabetic Cipher is a polyalphabetic cipher is a substitution cipher in which

the cipher alphabet changes during the encryption process.

What is Login Spoofing?

This is a technique for collecting usernames and passwords of users of the

system by an attacker who is an ordinary user of the system.

Define Virus

A virus is a program fragment that is attached to legitimate popular programs

like games or other utilities with the intention of infecting other programs.

List the various viruses.

 Companion virus

 Executable program virus

 Memory resident virus

Boot sector virus

Device driver virus

Macro virus

Sources code virus

What is Worm?

A worm is also like virus, but it can automatically spread to other computers

through the Internet.

What is Cryptography?

Cryptography is the process of representing information using secret codes

for providing security and confidentiality of information in a system.

Define Encryption.

Encryption is the process of transforming information (referred to as plaintext)

using an algorithm (called cipher) to make it unreadable to anyone except those

possessing special knowledge, usually referred to as a key.

What is authentication?

When a user logs on to a computer, the operating system wants to determine

who the user is. This process is called user authentication.

Define Authorization.

Authorization is that task after authentication to ensure whether the subject

has the right to access a secure entity in the system.

Attacks from Inside the System

An insider is a person who has logged into a computer using legitimate

username and password. In a system with long and special symbol based

passwords, breaking them to login may be difficult.

 A person who has logged in can also exploit the system vulnerabilities (bugs

or loop holes) to gain entry into other users’ area including administrators and

work in the system with their privileges. These attackers are also called

crackers, as they break the password system to gain unauthorized entries into

other users’ area. Attacks by insiders include:

Trojan Horses

Login Spoofing

Logic Bombs

Trap Doors

Buffer Overflow

Trojan Horses A Trojan Horse is a program that appears legitimate and

innocent but performs illicit activity when it is run, such as stealing passwords,

making the system more vulnerable to future entry or simply destroying

programs or data on the hard disk.

When users download and execute the program, the Trojan is executed do all

nasty things like removing files or reading passwords or send information to the

attacker’s site.

Login Spoofing

This is a technique for collecting usernames and passwords of users of the

system by an attacker who is an ordinary user of the system. The attacker or

cracker logs in to the system and executes a program which displays a login

window exactly looking like that of normal login window of the system.

If the users start the login sequence by pressing a key combination that the

user program cannot catch, this spoof attack can be bypassed or prevented.

Windows system uses control-alt-del keys combination for this purpose.

Logic Bombs

This is a piece of code that programmers (who are current employees) of a

company secretly inserted into the companies production operation system or

companies applications.

For example, as long as the programmer logs in everyday or alternate days,

the system functions normally. If the programmer did not login for, say two

continuous days, the logic bomb goes off leading to things like erasing files at

random and malfunctioning of the whole system.

Trap Doors

 Trap Door is another security hole caused by the programmer. This is done

by secretly inserting some code to the operating system (or application) code

that bypass some normal check.

For example, a programmer may add code to the login program to login using

a name ‘SAHARA’ whatever be the password string. So, the programmer can

login to computers of any company that loads this operating system or

application.

	SHRIMATI INDIRA GANDHI COLLEGE
	Affiliated to Bharathidasan University| Nationally Accredited at ‘A’ Grade(3rd Cycle) by NAAC
	An ISO 9001:2015 Certified Institution
	Thiruchirrappalli
	DEPARTMENT OF COMPUTER SCIENCE, INFORMATION TECHNOLOGY AND COMPUTER APPLICATIONS
	SHRIMATI INDIRA GANDHI COLLEGE,
	TIRUCHIRAPPALLI - 2

