
SHRIMATI INDIRA GANDHI COLLEGE

Affiliated to Bharathidasan University| Nationally Accredited at ‘A’ Grade(3rd Cycle) by NAAC

An ISO 9001:2015 Certified Institution

Thiruchirrappalli

STUDY MATERIAL

WEB SERVICES(P22CSE1A)

DEPARTMENT OF COMPUTER SCIENCE,

INFORMATION TECHNOLOGY AND

COMPUTER APPLICATIONS

Prepared by,

MS.T.R.B.VIDHYA, M.S.I.T.,M.Phil.,M.C.A.,

ASST. PROF. IN COMPUTER SCIENCE,

SHRIMATI INDIRA GANDHI COLLEGE,

TIRUCHIRAPPALLI - 2

UNIT - IV

BUILDING REAL WORLD ENTERPRISE WEB SERVICES AND APPLICATIONS

 Any application can be put together in a haphazard manner, but these applications are

almost never appropriate for a real world production environment. Real world enterprise

applications must be easy to develop, even easier to customize and maintain, support

transactional requirements, ...

SAMPLE SOURCE CODE TO DEVELOP WEB SERVICES

This section shows how to build and deploy a simple web service and two clients: an

application client and a web client. The source code for the service is in the tut-

install/examples/jaxws/helloservice-war/ directory, and the clients are in the tut-

install/examples/jaxws/hello-appclient/ and tut-install/examples/jaxws/hello-

webclient/ directories.

JAX-WS technology manages communication between a web service and a client.

Figure Communication between a JAX-WS Web Service and a Client

The starting point for developing a JAX-WS web service is a Java class annotated with

the javax.jws.WebService annotation. The @WebService annotation defines the class as a

web service endpoint.

A service endpoint interface or service endpoint implementation (SEI) is a Java interface or

class, respectively, that declares the methods that a client can invoke on the service. An

interface is not required when building a JAX-WS endpoint. The web service implementation

class implicitly defines an SEI.

You may specify an explicit interface by adding the endpointInterface element to

the @WebService annotation in the implementation class. You must then provide an interface

that defines the public methods made available in the endpoint implementation class.

STEPS NECESSARY FOR CREATING A WEB SERVICE AND CLIENT

The basic steps for creating a web service and client are as follows.

1. Code the implementation class.

2. Compile the implementation class.

3. Package the files into a WAR file.

4. Deploy the WAR file. The web service artifacts, which are used to communicate with

clients, are generated by GlassFish Server during deployment.

5. Code the client class.

6. Use the wsimport Maven goal to generate and compile the web service artifacts

needed to connect to the service.

7. Compile the client class.

8. Run the client.

If you use NetBeans IDE to create a service and client, the IDE performs the wsimport task

for you.

The sections that follow cover these steps in greater detail.

Requirements of a JAX-WS Endpoint

JAX-WS endpoints must follow these requirements.

 The implementing class must be annotated with either the javax.jws.WebService or

the javax.jws.WebServiceProvider annotation.

 The implementing class may explicitly reference an SEI through

the endpointInterface element of the @WebService annotation but is not required to

do so. If no endpointInterface is specified in @WebService , an SEI is implicitly

defined for the implementing class.

 The business methods of the implementing class must be public and must not be

declared static or final .

 Business methods that are exposed to web service clients must be annotated

with javax.jws.WebMethod .

 Business methods that are exposed to web service clients must have JAXB-

compatible parameters and return types. See the list of JAXB default data type

bindings in Types Supported by JAX-WS.

 The implementing class must not be declared final and must not be abstract .

 The implementing class must have a default public constructor.

 The implementing class must not define the finalize method.

 The implementing class may use the javax.annotation.PostConstruct or

the javax.annotation.PreDestroy annotations on its methods for lifecycle event

callbacks.

The @PostConstruct method is called by the container before the implementing class

begins responding to web service clients.

The @PreDestroy method is called by the container before the endpoint is removed

from operation.

Coding the Service Endpoint Implementation Class

In this example, the implementation class, Hello , is annotated as a web service endpoint

using the @WebService annotation. Hello declares a single method named sayHello ,

annotated with the @WebMethod annotation, which exposes the annotated method to web

https://javaee.github.io/tutorial/jaxws003.html#BNAZC

service clients. The sayHello method returns a greeting to the client, using the name passed

to it to compose the greeting. The implementation class also must define a default, public, no-

argument constructor.

package javaeetutorial.helloservice;

import javax.jws.WebService;

import javax.jws.WebMethod;

@WebService

public class Hello {

 private final String message = "Hello, ";

 public Hello() {

 }

 @WebMethod

 public String sayHello(String name) {

 return message + name + ".";

 }

}

Building, Packaging, and Deploying the Service

You can use either NetBeans IDE or Maven to build, package, and deploy the helloservice-

war application.

The following topics are addressed here:

 To Build, Package, and Deploy the Service Using NetBeans IDE

 To Build, Package, and Deploy the Service Using Maven

To Build, Package, and Deploy the Service Using NetBeans IDE

1. Make sure that GlassFish Server has been started (see Starting and Stopping

GlassFish Server).

2. From the File menu, choose Open Project.

3. In the Open Project dialog box, navigate to:

tut-install/examples/jaxws

4. Select the helloservice-war folder.

5. Click Open Project.

6. In the Projects tab, right-click the helloservice-war project and select Run.

This command builds and packages the application into a WAR file, helloservice-

war.war , located in tut-install/examples/jaxws/helloservice-war/target/ , and deploys

this WAR file to your GlassFish Server instance. It also opens the web service test

interface at the URL shown in To Test the Service without a Client.

Next Steps

You can view the WSDL file of the deployed service by requesting the

URL http://localhost:8080/helloservice-war/HelloService?wsdl in a web browser. Now you

are ready to create a client that accesses this service.

To Build, Package, and Deploy the Service Using Maven

1. Make sure that GlassFish Server has been started (see Starting and Stopping

GlassFish Server).

2. In a terminal window, go to:

tut-install/examples/jaxws/helloservice-war/

3. Enter the following command:

mvn install

This command builds and packages the application into a WAR file, helloservice-

war.war , located in the target directory, and then deploys the WAR to GlassFish

Server.

Next Steps

https://javaee.github.io/tutorial/jaxws002.html#BNAYS
https://javaee.github.io/tutorial/jaxws002.html#BNAYT
https://javaee.github.io/tutorial/usingexamples002.html#BNADI
https://javaee.github.io/tutorial/usingexamples002.html#BNADI
https://javaee.github.io/tutorial/jaxws002.html#BNAYW
http://localhost:8080/helloservice-war/HelloService?wsdl
https://javaee.github.io/tutorial/usingexamples002.html#BNADI
https://javaee.github.io/tutorial/usingexamples002.html#BNADI

You can view the WSDL file of the deployed service by requesting the

URL http://localhost:8080/helloservice-war/HelloService?wsdl in a web browser. Now you

are ready to create a client that accesses this service.

Testing the Methods of a Web Service Endpoint

GlassFish Server allows you to test the methods of a web service endpoint.

The following topics are addressed here:

 To Test the Service without a Client

To Test the Service without a Client

To test the sayHello method of HelloService , follow these steps.

1. Open the web service test interface by entering the following URL in a web browser:

http://localhost:8080/helloservice-war/HelloService?Tester

2. Under Methods, enter a name as the parameter to the sayHello method.

3. Click sayHello.

This takes you to the sayHello Method invocation page.

Under Method returned, you’ll see the response from the endpoint.

A Simple JAX-WS Application Client

The HelloAppClient class is a stand-alone application client that accesses

the sayHello method of HelloService . This call is made through a port, a local object that

acts as a proxy for the remote service. The port is created at development time by

the wsimport Maven goal, which generates JAX-WS portable artifacts based on a WSDL

file.

The following topics are addressed here:

 Coding the Application Client

 Running the Application Client

Coding the Application Client

When invoking the remote methods on the port, the client performs these steps.

1. It uses the generated helloservice.endpoint.HelloService class, which represents the

service at the URI of the deployed service’s WSDL file:

2. import javaeetutorial.helloservice.endpoint.HelloService;

http://localhost:8080/helloservice-war/HelloService?wsdl
https://javaee.github.io/tutorial/jaxws002.html#BNAYW
https://javaee.github.io/tutorial/jaxws002.html#BNAYY
https://javaee.github.io/tutorial/jaxws002.html#BNAYZ

3. import javax.xml.ws.WebServiceRef;

4.

5. public class HelloAppClient {

6. @WebServiceRef(wsdlLocation =

7. "http://localhost:8080/helloservice-war/HelloService?WSDL")

 private static HelloService service;

8. It retrieves a proxy to the service, also known as a port, by invoking getHelloPort on

the service:

javaeetutorial.helloservice.endpoint.Hello port = service.getHelloPort();

The port implements the SEI defined by the service.

9. It invokes the port’s sayHello method, passing a string to the service:

return port.sayHello(arg0);

Here is the full source of HelloAppClient.java , which is located in the tut-

install/examples/jaxws/hello-

appclient/src/main/java/javaeetutorial/hello/appclient/ directory:

package javaeetutorial.hello.appclient;

import javaeetutorial.helloservice.endpoint.HelloService;

import javax.xml.ws.WebServiceRef;

public class HelloAppClient {

 @WebServiceRef(wsdlLocation =

 "http://localhost:8080/helloservice-war/HelloService?WSDL")

 private static HelloService service;

 /**

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 System.out.println(sayHello("world"));

 }

 private static String sayHello(java.lang.String arg0) {

 javaeetutorial.helloservice.endpoint.Hello port =

 service.getHelloPort();

 return port.sayHello(arg0);

 }

}

Running the Application Client

You can use either NetBeans IDE or Maven to build, package, deploy, and run the hello-

appclient application. To build the client, you must first have deployed helloservice-war , as

described in Building, Packaging, and Deploying the Service.

The following topics are addressed here:

 To Run the Application Client Using NetBeans IDE

https://javaee.github.io/tutorial/jaxws002.html#BNAYR
https://javaee.github.io/tutorial/jaxws002.html#CIHBGFGA

To Run the Application Client Using NetBeans IDE

1. From the File menu, choose Open Project.

2. In the Open Project dialog box, navigate to:

tut-install/examples/jaxws

3. Select the hello-appclient folder.

4. Click Open Project.

5. In the Projects tab, right-click the hello-appclient project and select Build.

This command runs the wsimport goal, then builds, packages, and runs the client.

You will see the output of the application client in the hello-appclient output tab:

--- exec-maven-plugin:1.2.1:exec (run-appclient) @ hello-appclient ---

Hello, world.

To Run the Application Client Using Maven

1. In a terminal window, go to:

tut-install/examples/jaxws/hello-appclient/

2. Enter the following command:

mvn install

This command runs the wsimport goal, then builds, packages, and runs the client.

The application client output looks like this:

--- exec-maven-plugin:1.2.1:exec (run-appclient) @ hello-appclient ---

Hello, world.

A Simple JAX-WS Web Client

HelloServlet is a servlet that, like the Java client, calls the sayHello method of the web

service. Like the application client, it makes this call through a port.

The following topics are addressed here:

 Coding the Servlet

 Running the Web Client

Coding the Servlet

To invoke the method on the port, the client performs these steps.

https://javaee.github.io/tutorial/jaxws002.html#GJYFL
https://javaee.github.io/tutorial/jaxws002.html#GJYGE

1. It imports the HelloService endpoint and the WebServiceRef annotation:

2. import javaeetutorial.helloservice.endpoint.HelloService;

3. ...

import javax.xml.ws.WebServiceRef;

4. It defines a reference to the web service by specifying the WSDL location:

5. @WebServiceRef(wsdlLocation =

 "http://localhost:8080/helloservice-war/HelloService?WSDL")

6. It declares the web service, then defines a private method that calls

the sayHello method on the port:

7. private HelloService service;

8. ...

9. private String sayHello(java.lang.String arg0) {

10. javaeetutorial.helloservice.endpoint.Hello port =

11. service.getHelloPort();

12. return port.sayHello(arg0);

}

13. In the servlet, it calls this private method:

out.println("<p>" + sayHello("world") + "</p>");

The significant parts of the HelloServlet code follow. The code is located in the tut-

install/examples/jaxws/hello-webclient/src/java/javaeetutorial/hello/ webclient/ directory.

package javaeetutorial.hello.webclient;

import javaeetutorial.helloservice.endpoint.HelloService;

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.xml.ws.WebServiceRef;

@WebServlet(name="HelloServlet", urlPatterns={"/HelloServlet"})

public class HelloServlet extends HttpServlet {

 @WebServiceRef(wsdlLocation =

 "http://localhost:8080/helloservice-war/HelloService?WSDL")

 private HelloService service;

 /**

 * Processes requests for both HTTP <code>GET</code>

 * and <code>POST</code> methods.

 * @param request servlet request

 * @param response servlet response

 * @throws ServletException if a servlet-specific error occurs

 * @throws IOException if an I/O error occurs

 */

 protected void processRequest(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 try (PrintWriter out = response.getWriter()) {

 out.println("<html lang=\"en\">");

 out.println("<head>");

 out.println("<title>Servlet HelloServlet</title>");

 out.println("</head>");

 out.println("<body>");

 out.println("<h1>Servlet HelloServlet at " +

 request.getContextPath () + "</h1>");

 out.println("<p>" + sayHello("world") + "</p>");

 out.println("</body>");

 out.println("</html>");

 }

 }

 // doGet and doPost methods, which call processRequest, and

 // getServletInfo method

 private String sayHello(java.lang.String arg0) {

 javaeetutorial.helloservice.endpoint.Hello port =

 service.getHelloPort();

 return port.sayHello(arg0);

 }

}

Running the Web Client

You can use either NetBeans IDE or Maven to build, package, deploy, and run the hello-

webclient application. To build the client, you must first have deployed helloservice-war , as

described in Building, Packaging, and Deploying the Service.

The following topics are addressed here:

 To Run the Web Client Using NetBeans IDE

 To Run the Web Client Using Maven

To Run the Web Client Using NetBeans IDE

1. From the File menu, choose Open Project.

2. In the Open Project dialog box, navigate to:

https://javaee.github.io/tutorial/jaxws002.html#BNAYR
https://javaee.github.io/tutorial/jaxws002.html#CIHHFFEC
https://javaee.github.io/tutorial/jaxws002.html#CIHHDCEH

tut-install/examples/jaxws

3. Select the hello-webclient folder.

4. Click Open Project.

5. In the Projects tab, right-click the hello-webclient project and select Build.

This task runs the wsimport goal, builds and packages the application into a WAR

file, hello-webclient.war , located in the target directory, and deploys it to GlassFish

Server.

6. In a web browser, enter the following URL:

http://localhost:8080/hello-webclient/HelloServlet

The output of the sayHello method appears in the window.

To Run the Web Client Using Maven

1. In a terminal window, go to:

tut-install/examples/jaxws/hello-webclient/

2. Enter the following command:

mvn install

This command runs the wsimport goal, then build and packages the application into a

WAR file, hello-webclient.war , located in the target directory. The WAR file is then

deployed to GlassFish Server.

3. In a web browser, enter the following URL:

http://localhost:8080/hello-webclient/HelloServlet

The output of the sayHello method appears in the window.

DEVELOPING WEB SERVICE APPLICATIONS

Develop and publish web service applications, which are modular applications that

implement a services oriented architecture (SOA). These topics explain how to create and

deploy web services, how to implement web service security, and how to test and validate

web services.

 Learn about web service applications

Web services are self-contained, modular applications that can be described,

published, located, and invoked over a network. They implement a services oriented

architecture (SOA), which supports the connecting or sharing of resources and data in

a very flexible and standardized manner. Services are described and organized to

support their dynamic, automated discovery and reuse.

https://www.ibm.com/docs/en/SSHR6W/com.ibm.websphere.wdt.doc/topics/core/clearn_webserv.html

 SOAP

SOAP (formerly known as Simple Object Access Protocol) is a lightweight protocol

for the exchange of information in a decentralized, distributed environment. A SOAP

message is a transmission of information from a sender to a receiver. SOAP messages

can be combined to perform request/response patterns.

 Java API for XML based web services

Java API for XML-based web services (JAX-WS), which is also known as JSR-224,

is the next generation web services programming model that extends the foundation

provided by the Java API for XML-based RPC (JAX-RPC) programming model.

Using JAX-WS, developing web services and clients is simplified with greater

platform independence for Java applications by the use of dynamic proxies and Java

annotations. The web services tools included in this product support JAX-WS 2.0,

2.1, and 2.2.

 JAXB

Java Architecture for XML Binding (JAXB), which is also known as JSR-222, is a

Java technology that provides an easy and convenient way to map Java classes and

XML schema for simplified development of web services. JAXB leverages the

flexibility of platform-neutral XML data in Java applications to bind XML schema to

Java applications without requiring extensive knowledge of XML programming. The

tools included in this workbench implement JAXB 2.0, 2.1, and 2.2 standards.

 Known problems and limitations for web service applications

Various known problems and limitations apply when you are working with web

service applications and WebSphere Developer Tools. Issues include, among others,

problems when you use a secured WebSphere Application Server and when you use

the web services wizards.

 Developing JAX-RS applications

You can develop Java API for RESTful web services (JAX-RS) applications so that

you can create Representational State Transfer (REST) services quickly.

 Tools for web services development

 Configuring a workspace for web services development

Although you can begin web services development immediately upon creating a

workspace, you might find it convenient to configure your workspace to optimize

your development experience.

 Developing web services and clients

You can create web services and clients by using the web services wizards,

annotations, Ant tasks, or command-line tools.

 Web services: Editing, assembling, and securing tasks

After you create a web service or client, you can do various assembly tasks, such as

editing the web service deployment descriptors, adding handlers, and enabling

security.

 Creating and editing JAX-WS web service handlers

You can add JAX-WS logical or protocol handlers to intercept inbound and outbound

messages to or from web services and their clients. You can select from any currently

available JAX-WS web services and clients and start the Handler Creation Wizard. In

the wizard, you provide the class name of the handler, the handler name, and an

optional display name, and specify the type of handler. When finished, the wizard

generates the skeleton handler code and updates the applicable deployment descriptor.

 Merged skeleton files for web services updates

After you create a web service, you might want to change it. Although you cannot

automatically propagate all your changes to all the required files, to retain your

https://www.ibm.com/docs/en/SSHR6W/com.ibm.websphere.wdt.doc/topics/core/csoap.html
https://www.ibm.com/docs/en/SSHR6W/com.ibm.websphere.wdt.doc/topics/core/cjaxws.html
https://www.ibm.com/docs/en/SSHR6W/com.ibm.websphere.wdt.doc/topics/core/cjaxb.html
https://www.ibm.com/docs/en/SSHR6W/com.ibm.websphere.wdt.doc/topics/core/rlimit.html
https://www.ibm.com/docs/en/SSHR6W/com.ibm.websphere.wdt.doc/topics/core/t_container_jaxrs.html
https://www.ibm.com/docs/en/SSHR6W/com.ibm.websphere.wdt.doc/topics/core/cwsinwsa.html
https://www.ibm.com/docs/en/SSHR6W/com.ibm.websphere.wdt.doc/topics/core/twsconfws.html
https://www.ibm.com/docs/en/SSHR6W/com.ibm.websphere.wdt.doc/topics/core/toverws.html
https://www.ibm.com/docs/en/SSHR6W/com.ibm.websphere.wdt.doc/topics/core/cwsassembleover.html
https://www.ibm.com/docs/en/SSHR6W/com.ibm.websphere.wdt.doc/topics/jaxws/thandler.html
https://www.ibm.com/docs/en/SSHR6W/com.ibm.websphere.wdt.doc/topics/core/rmergechange.html

changes while you update the web service, you can merge a generated skeleton file.

You can then regenerate your web service, and your changes remain intact.

 Securing web services

Web services security for WebSphere Application Server is based on the OASIS web

services security (WSS) Version 1.0 specification, the Username token Version 1.0

profile, and the X.509 token Version 1.0 profile. These standards and profiles address

how to provide protection for messages that are exchanged in a web service

environment.

 Deploying web services

Deploying a web service involves creating the code that makes your web service

available to others. You can deploy a project, an EAR file, or an application client. If

you created a web service by using the web services wizards, the deployment code is

generated automatically.

 Testing and validating web services

After you create a web service or client, you can test it using sample JSPs, the web

services Explorer, or the Generic Service Client. You can also test the SOAP traffic

that is passed by the service.

PORT ACCESS: SEAMLESS TRANSITIONS FROM ONE AREA TO

ANOTHER

 In order to ensure seamless transitions from one area to another, a range of terminals to

provide the functions known generically as PORT Access has been developed.

Featuring user-friendly, high-resolution interfaces and timeless design, they are

adaptable to a variety of use cases. Each terminal supports myPORT – Schindler’s

breakthrough mobile solution – giving tenants and building owners the flexibility to

manage powerful digital features from a smartphone or tablet.

https://www.ibm.com/docs/en/SSHR6W/com.ibm.websphere.wdt.doc/topics/security/tsecurews.html
https://www.ibm.com/docs/en/SSHR6W/com.ibm.websphere.wdt.doc/topics/core/twsdeployover.html
https://www.ibm.com/docs/en/SSHR6W/com.ibm.websphere.wdt.doc/topics/core/twstest_container.html

UNIT-V

How to deploy a java web application on tomcat
server
What is a web application?What is Tomcat Server?1. How to deploy a Java web app on Tomcat on

Windows1.1 How to install Java on WindowsDownload and install Java on windowsHow to set

JAVA_HOME in WindowsHow to install Tomcat on WindowsHow to deploy Tomcat on Windows2. How

to deploy a Java web app on Tomcat on Mac1.2 How to install Java on MacInstall Java with

HomebrewHow to install Tomcat on MacHow to deploy Tomcat on Mac3. How to deploy a Java web app

on Tomcat on Linux1.3 How to install Java on LinuxInstall Java on Linux with apt or yumHow to install

Tomcat on LinuxHow to deploy Tomcat on LinuxFAQ

What is a dynamic web application?
A dynamic web application produces web pages in real-time. Based on the client request, the server

generates a custom response and sent to the client. To differentiate, static web pages send the same

response to the same resource, where dynamic web apps can return different responses for the same

resource. (not considering request parameters for the moment.)

For example, when you access your email, you get access to only your emails, and the server produces the

response exclusively for you. The article How to set up a Dynamic Web Module with Maven and Eclipse

explains how to create a basic, bare minimum maven web application. To recap, we named that web

application SpringWeb. Now let's deploy the SpringWeb web application on the tomcat web server,

enabling visitors to access it via a browser.

What is the Tomcat server?
Apache Tomcat is an open-source Java servlet container. Tomcat implements core Java enterprise specs,

such as Java Servlets, JavaServer Pages (JSP), and WebSockets APIs.

Tomcat was first released in 1998 as an Apache Software Foundation project. Tomcat web server directly

deal with client requests and responses. When we use Tomcat to deploy our web application, Tomcat

handles requests from clients and responses back to clients. Our web application deals with Tomcat.

Creating a Java web application is not in the scope of this article. If you do not have a web application war

file, follow Dynamic Web Project with Maven and Eclipse to create one.

Tomcat needs Java installed and the path set to run. This article explains

 How to install Java

 How to configure Java

 How to install Tomcat

 How to deploy a dynamic web application in Tomcat

In Windows, Mac, and Linus operating systems. First, let's start with Windows.

https://www.learnbestcoding.com/post/3/how-to-deploy-a-java-web-application-on-tomcat-server#whatIsAWebApplication
https://www.learnbestcoding.com/post/3/how-to-deploy-a-java-web-application-on-tomcat-server#whatIsAWebApplication
https://www.learnbestcoding.com/post/3/how-to-deploy-a-java-web-application-on-tomcat-server#java-tomcat-windows
https://www.learnbestcoding.com/post/3/how-to-deploy-a-java-web-application-on-tomcat-server#java-tomcat-windows
https://www.learnbestcoding.com/post/3/how-to-deploy-a-java-web-application-on-tomcat-server#java-windows
https://www.learnbestcoding.com/post/3/how-to-deploy-a-java-web-application-on-tomcat-server#java-windows
https://www.learnbestcoding.com/post/3/how-to-deploy-a-java-web-application-on-tomcat-server#java-home-windows
https://www.learnbestcoding.com/post/3/how-to-deploy-a-java-web-application-on-tomcat-server#java-home-windows
https://www.learnbestcoding.com/post/3/how-to-deploy-a-java-web-application-on-tomcat-server#install-tomcat-windows
https://www.learnbestcoding.com/post/3/how-to-deploy-a-java-web-application-on-tomcat-server#install-tomcat-windows
https://www.learnbestcoding.com/post/3/how-to-deploy-a-java-web-application-on-tomcat-server#deploy-java-tomcat-mac
https://www.learnbestcoding.com/post/3/how-to-deploy-a-java-web-application-on-tomcat-server#deploy-java-tomcat-mac
https://www.learnbestcoding.com/post/3/how-to-deploy-a-java-web-application-on-tomcat-server#install-java-mac
https://www.learnbestcoding.com/post/3/how-to-deploy-a-java-web-application-on-tomcat-server#install-java-mac
https://www.learnbestcoding.com/post/3/how-to-deploy-a-java-web-application-on-tomcat-server#inatall-java-homebrew
https://www.learnbestcoding.com/post/3/how-to-deploy-a-java-web-application-on-tomcat-server#inatall-java-homebrew
https://www.learnbestcoding.com/post/3/how-to-deploy-a-java-web-application-on-tomcat-server#deploy-tomcat-mac
https://www.learnbestcoding.com/post/3/how-to-deploy-a-java-web-application-on-tomcat-server#deploy-tomcat-mac
https://www.learnbestcoding.com/post/3/how-to-deploy-a-java-web-application-on-tomcat-server#tomcat-linux
https://www.learnbestcoding.com/post/3/how-to-deploy-a-java-web-application-on-tomcat-server#tomcat-linux
https://www.learnbestcoding.com/post/3/how-to-deploy-a-java-web-application-on-tomcat-server#java-linux-apt-yum
https://www.learnbestcoding.com/post/3/how-to-deploy-a-java-web-application-on-tomcat-server#java-linux-apt-yum
https://www.learnbestcoding.com/post/3/how-to-deploy-a-java-web-application-on-tomcat-server#install-tomcat-linux
https://www.learnbestcoding.com/post/3/how-to-deploy-a-java-web-application-on-tomcat-server#install-tomcat-linux
https://www.learnbestcoding.com/post/3/how-to-deploy-a-java-web-application-on-tomcat-server#faq
https://www.learnbestcoding.com/post/1/how-to-setup-a-dynamic-web-project-with-maven-and-eclipse

1. How to deploy a Java web app on Tomcat on

Windows #
To deploy the Tomcat server on Windows, we need to have Java installed and the JAVA_HOME variable

set.

1.1 How to install Java on Windows #
Before trying to install Java, ensure you do not have Java installed in your system. Open a command

prompt and type the below command.

java -version

If Java is installed in your system and the path is set, you will see an output similar to :

C:\Program Files>java -version

OpenJDK version "1.8.0_131"

OpenJDK Runtime Environment (.................)

If that is the case, you can skip to the next step, How to set JAVA_HOME in Windows.

Otherwise, your command line output will look something like this:

java -version is not recognized as an internal or external command

Now we know at least the path is not set. The next step is to ensure that Java is installed. Without the path

set, there are several ways to check if Java is installed.

 Go to control panel -> Programmes -> Programmes and features and type Java in the search box.

If Java is installed, a Java icon will appear.

 Click Start Menu and type Java, and look for the Java icon.

If Java is installed, you can skip to the next step, How to set JAVA_HOME in Windows.

Download and install Java on windows#
Download Java from the Oracle site or the free version from the OpenJDK. Follow the installation steps.

Make sure to note down the full installation path. My installation path is c:\learnbestcoding\jdk18

How to set JAVA_HOME in Windows #

 Click Start and type environment variables

 Select Edit the system environment variables

 Click Environment variables

 Click new under System variables

 Enter JAVA_HOME for the variable name and the JDK installation path

(c:\learnbestcoding\jdk18) for the variable value.

 Click ok. Restart the command window and type echo %JAVA_HOME%

How to install Tomcat on Windows #

 Download Tomcat

https://www.learnbestcoding.com/post/3/how-to-deploy-a-java-web-application-on-tomcat-server#java-home-windows
https://www.learnbestcoding.com/post/3/how-to-deploy-a-java-web-application-on-tomcat-server#java-home-windows
https://www.java.com/en/download/
https://jdk.java.net/18/
https://tomcat.apache.org/

 Extract the archive to your local hard drive. My Tomcat is in c:\learnbestcoding\tomcat.

This location is called CATALINA_HOME.

 Create CATALINA_HOME environment variable. Variable value

is c:\learnbestcoding\tomcat.

Now we have completed all the steps to run the Tomcat server on the Windows system.

How to deploy Tomcat on Windows #

 Place the Java war file in the CATALINA_HOME\webapps folder. That

is c:\learnbestcoding\tomcat\webapps

 Open a command prompt and navigate to the CATALINA_HOME\bin folder

 Run the server by typing startup.bat

 Open a browser and navigate to http://localhost:8080/webapp. Replace webapp with the

actual context name of the web application.

How to deploy a Java web app on Tomcat on

Mac #
1.2 How to install Java on Mac #
To ensure if you already have Java installed in your system,

 Open a terminal window and type javac -version. If Java is installed, it will output the

installed version.

 Open a terminal window and type which java. If Java is installed, it will output the installation

location.

If Java is installed, you can skip to the next step, How to install Tomcat on Mac.

Install Java with Homebrew #

 Install Homebrew

 Install Java with brew install openjdk@18

 Confirm the installation with brew info java

 For the system Java wrappers to find this JDK, symlink it with sudo ln -sfn
/opt/homebrew/opt/openjdk/libexec/openjdk.jdk
/Library/Java/JavaVirtualMachines/openjdk.jdk

 Set the path with export PATH="/opt/homebrew/opt/openjdk/bin:$PATH"

 Create JAVA_HOME with echo export "JAVA_HOME=/opt/homebrew/opt/openjdk"
>> ~/.zshrc or echo export or "JAVA_HOME=/opt/homebrew/opt/openjdk" >>
~/.bash_profile

How to install Tomcat on Mac #

 Download Tomcat from https://tomcat.apache.org

 Extract the archive into your local hard drive. My Tomcat location

is /Users/learnbestcoding/SERVERS/apache-tomcat-10.0.14. That is also your
CATALINA_HOME.

https://www.learnbestcoding.com/post/3/how-to-deploy-a-java-web-application-on-tomcat-server#install-tomcat-mac
https://brew.sh/
https://tomcat.apache.org/

 Set CATALINA_HOME with export
CATALINA_HOME=/Users/learnbestcoding/SERVERS/apache-tomcat-10.0.14

Now the Tomcat server is ready to run on the Mac.

How to deploy Tomcat on Mac #

 Place the Java war file in the CATALINA_HOME\webapps folder. That

is /Users/learnbestcoding/SERVERS/apache-tomcat-10.0.14/webapps

 Open a command prompt and navigate to the CATALINA_HOME\bin folder

 Run the server by typing startup.sh

 Open a browser and navigate to http://localhost:8080/webapp. Replace webapp with the

actual context name of the web application.

 To stop the server run shutdown.sh

How to deploy a Java web app on Tomcat on Linux #

1.3 How to install Java on Linux #
To ensure you don't have Java installed in your Linux system,

 Open a terminal window and type javac -version. If Java is installed, it will output the

installed version. Otherwise, the output will be java: command not found.

 Open a terminal window and type which java. If Java is installed, it will output the installation

location.

If Java is installed, you can skip to the next step, How to install Tomcat on Linux. But don't forget to set

JAVA_HOME.

Install Java on Linux with apt or yum #

 Run sudo apt update or sudo yum update (for aws)

 Install Java with sudo apt-get install openjdk-18-jdk -y (check FAQ for AWS

Linux)

 Confirm the installation with the java --version

 Find the installation location with which java

 Set JAVA_HOME with export JAVA_HOME=/usr/bin/java

How to install Tomcat on Linux #

 Create a directory to hold Tomcat server folder. I use /home/learnbestcoding/tomcat as my

Tomcat location. mkdir /home/learnbestcoding/tomcat

 Download and extract Apache Tomcat server into /home/learnbestcoding/tomcat
directory.

 That Tomcat installation directory is also called CATALINA_HOME. Set CATALINA_HOME

variable with export CATALINA_HOME=/home/learnbestcoding/tomcat

How to deploy Tomcat on Linux #

 Place the Java war file in the CATALINA_HOME\webapps folder. That

is /home/learnbestcoding/tomcat/webapps

https://www.learnbestcoding.com/post/3/how-to-deploy-a-java-web-application-on-tomcat-server#install-tomcat-linux
https://www.learnbestcoding.com/post/3/how-to-deploy-a-java-web-application-on-tomcat-server#faq
https://tomcat.apache.org/

 Open a command prompt and navigate to the CATALINA_HOME/bin folder.

 Run the server by typing ./startup.sh

 Open a browser and navigate to http://localhost:8080/webapp. Replace webapp with the

actual context name of the web application.

 To stop the server run ./shutdown.sh

FAQ #
Q. sudo: apt: command not found
A. That usually happens in AWS EC2 instances. For AWS instances, use sudo amazon-linux-extras
install java-openjdk11 -y with your preferred JDK version.

Q. mkdir: cannot create directory 'tomcat': Permission

denied
A. This happens when the base folder is not in your home directory. Use sudo mkdir tomcat

Q. Cannot find /home/ec2-

user/tomcat/bin/setclasspath.sh This file is needed to run

this program
A. This can be due to the CATALINA_HOME variable pointing to the wrong folder. Make sure the

CATALINA_HOME points to your actual tomcat server folder. The unset CATALINA_HOME will solve

this error, but it will also remove the CATALINA_HOME variable. The correct solution is to fix the

CATALINA_HOME path.

Java SOAP Webservice using Axis 2 and Tomcat

Tutorial with examples
PUBLISHED ON October 01, 2014 BY: Prakash Hari Sharma IN:Web Services

Web services are application components which communicate using open protocols. Using Web

Services we can publish our application's functions to everyone. This tutorial provides step by

step instructions to develop Web Services using Axis2 Web Services / SOAP / WSDL engine and

Eclipse IDE. Let's start.

Axis 2

Axis 2 is a web service/SOAP/WSDL engine provided by Apache. It is a java based

implementation. Axis 2 provides complete object model and modular architecture. Using Axis 2

you can easily create a web service from a plain java class, send SOAP messages, receive

SOAP message.

We have used below tools for this tutorials

1. Apache Tomcat 7.05.55 Download from this website http://tomcat.apache.org/

2. axis2-1.6.2 Download from this website http://axis.apache.org/axis2/java/core/

3. Eclipse IDE - Kepler for Web Developers. Download from this
website http://www.eclipse.org/

http://www.tutorialsdesk.com/search/label/Web%20Services
http://tomcat.apache.org/
http://axis.apache.org/axis2/java/core/
http://www.eclipse.org/

Set Axis runtime in Eclipse

 Go to Window Menu.

 Click on Preferences.

 Expand Web Services option.

 Click Axis2 Preferences.

 Give your axis2 location in the Axis2 runtime location box.

Set Tomcat runtime in Eclipse

 Go to Window Menu.

 Click on Preferences.

 Expand Server option.

 Click on ADD.

 Select Apache Tomcat v7.0.

 Click Next

 Give your Tomcat location in the Tomcat installation directory box.

http://3.bp.blogspot.com/-ZAJlQatoLpc/VCziKGnvmPI/AAAAAAAAA64/97awGaXRLds/s1600/AXIS_RUNTIME.png

Creating a web service from a plain java class in eclipse

Let's develope a simple web application to demonstrate Java SOAP Webservices using Axis 2

and Tomcat. This Sample Application is all about querying information from a Web Application.

For this, let us assume that we have a Employee Database maintained in the backend and we

publish the various services to the Client in the WSDL file. Both types of clients, Browser Client

and Console Client are included in the sample Application.

STEP 1 : Create a new Dynamic Web Project called TutorialsDesk.AxisWebService.

http://4.bp.blogspot.com/-Ln3IaqIBpGo/VCziu0ZDheI/AAAAAAAAA7A/GU9ESKXWkh0/s1600/tomcat.png

STEP 2 : Create a package com.tutorialsdesk.axis.bean under TutorialsDesk.AxisWebService.

STEP 3 : Create class Employee.java under package com.tutorialsdesk.axis.bean as given

below

package com.tutorialsdesk.axis.bean;

import java.io.Serializable;

public class Employee implements Serializable {

 private static final long serialVersionUID = -1129402159048345204L;

 String Name;

 String Department;

 int Age;

 double Salary;

http://4.bp.blogspot.com/-BBBqGXhY4Kc/VCzjnWZAQ8I/AAAAAAAAA7I/2pOA4pIHIeU/s1600/Project.png

 public Employee() {

 }

 public Employee(String name, String department, int age, double salary) {

 super();

 Name = name;

 Department = department;

 Age = age;

 Salary = salary;

 }

 public String getName() {

 return Name;

 }

 public void setName(String name) {

 Name = name;

 }

 public String getDepartment() {

 return Department;

 }

 public void setDepartment(String department) {

 Department = department;

 }

 public int getAge() {

 return Age;

 }

 public void setAge(int age) {

 Age = age;

 }

 public double getSalary() {

 return Salary;

 }

 public void setSalary(double salary) {

 Salary = salary;

 }

}

STEP 4 : Create a package com.tutorialsdesk.axis.util under TutorialsDesk.AxisWebService.

STEP 5 : Create class EmployeeDatabase.java under package com.tutorialsdesk.axis.util as

given below

package com.tutorialsdesk.axis.util;

import java.util.*;

import com.tutorialsdesk.axis.bean.Employee;

public class EmployeeDatabase {

 private static List<employee> employees;

 public static List<employee> list(){

 return employees;

 }

 public static Employee getEmployee(String name){

 Iterator<employee> iterator = employees.iterator();

 while (iterator.hasNext()){

 Employee employee = (Employee) iterator.next();

 if (employee.getName().equals(name)){

 return employee;

 }

 }

 return null;

 }

 public static Employee getEmployeeData(String name){

 Iterator<employee> iterator = employees.iterator();

 while (iterator.hasNext()){

 Employee employee = (Employee) iterator.next();

 if (employee.getName().equals(name)){

 return employee;

 }

 }

 return null;

 }

 static {

 initEmployees();

 }

 static void initEmployees(){

 employees = new ArrayList<employee>();

 employees.add(new Employee("Rahul", "HR", 25, 15000.00));

 employees.add(new Employee("Zuzana", "Sales", 32, 48000.00));

 employees.add(new Employee("Martin", "Engineering",22, 32000.00));

 employees.add(new Employee("Sachin", "Engineering",25, 65000.00));

 employees.add(new Employee("Ondrej", "Operations",26, 25000.00));

 }

}

STEP 6 : Create a package com.tutorialsdesk.axis.services under

TutorialsDesk.AxisWebService.

STEP 7 : Create class EmployeeService.java under package com.tutorialsdesk.axis.services as

given below

package com.tutorialsdesk.axis.services;

import java.util.List;

import com.tutorialsdesk.axis.util.EmployeeDatabase;

import com.tutorialsdesk.axis.bean.Employee;

public class EmployeeService {

 public int getAgeForEmployee(String name){

 return EmployeeDatabase.getEmployee(name).getAge();

 }

 public String getDepartmentForEmployee(String name){

 return EmployeeDatabase.getEmployee(name).getDepartment();

 }

 public double getSalaryForEmployee(String name){

 return EmployeeDatabase.getEmployee(name).getSalary();

 }

 public Employee getEmployeeData(String name){

 return EmployeeDatabase.getEmployeeData(name);

 }

 public String getAllEmployees(){

 List<employee%gt; Employees = EmployeeDatabase.list();

 StringBuilder result = new StringBuilder();

 for(Employee employee : Employees){

 result.append(employee.getName() + " ");

 }

 return result.toString();

 }

}

STEP 8 : In Project folder right click on EmployeeService.java

STEP 9 : Click on Web Services - > Create Web Service.

STEP 10 : Select options publish the web service and Monitor the web service.

STEP 11 : Click on Finish.

http://4.bp.blogspot.com/-155IpwWe4-w/VCzkDXxWPcI/AAAAAAAAA7Q/s374iZjw-kw/s1600/right_click.png
http://4.bp.blogspot.com/-4DFgGCZH41o/VCzkVkK47XI/AAAAAAAAA7Y/8JJ6QoWbuDk/s1600/create_webservice.png

STEP 12 : It may take some time to finish all processes and you should see new project

“TutorialsDesk.AxisWebServiceClient” created. Here is a final project structure.

STEP 13 : “TutorialsDesk.AxisWebService” and “TutorialsDesk.AxisWebServiceClient” both

projects should be automatically deployed to server.

http://3.bp.blogspot.com/-aKw1WPziJIY/VCzlDnkqchI/AAAAAAAAA7o/bEJs2peNI1k/s1600/final_project.png
http://4.bp.blogspot.com/-VkHILz0qUDc/VCzkvwSJYtI/AAAAAAAAA7g/jg4jkAst4jw/s1600/tomcat_deploy.png

Invoking the Web Services

Use the following URL’s to access the various web services operations

 http://localhost:8080/TutorialsDesk.AxisWebService/services/EmployeeService?
method=getAllEmployees

 http://localhost:8080/TutorialsDesk.AxisWebService/services/EmployeeService?
method=getAgeForEmployee&name=Martin

 http://localhost:8080/TutorialsDesk.AxisWebService/services/EmployeeService?
method=getSalaryForEmployee&name=Ondrej

 http://localhost:8080/TutorialsDesk.AxisWebService/services/EmployeeService?
method=getDepartmentForEmployee&name=Rahul

 http://localhost:8080/TutorialsDesk.AxisWebService/services/EmployeeService?
method=getEmployeeData&name=Zuzana

Creating a Console-based Client

Let us see how to access the Web Service using the Axis Client API with a normal Console

Client. Following is the code snippet for the same.

package com.tutorialsdesk.axis.client;

import java.net.URL;

import org.apache.axis.client.Service;

import org.apache.axis.client.Call;

public class EmployeeServiceClient {

 public static void main(String[] args) {

 try{

 URL url = new

URL("http://localhost:8080/TutorialsDesk.AxisWebService/services/EmployeeS

ervice");

 Service service = new Service();

 Call call = (Call)service.createCall();

 call.setTargetEndpointAddress(url);

 Object result = call.invoke("getAllEmployees", new

Object[]{});

 System.out.println(result);

 result = call.invoke("getAgeForEmployee", new

Object[]{"Martin"});

 System.out.println(result);

 result = call.invoke("getSalaryForEmployee", new

Object[]{"Ondrej"});

 System.out.println(result);

 result = call.invoke("getDepartmentForEmployee", new

Object[]{"Rahul"});

 System.out.println(result);

 }catch(Exception exception){

 exception.printStackTrace();

 }

 }

}

Hope we are able to explain you Java SOAP Webservices using Axis 2 and Tomcat , if you

have any questions or suggestions please write to us using contact us form.(Second Menu from

top left).

Skip to main content


o SIGN IN
o TRY NOW


o TEAMS

 For business
 For government
 For higher ed

o INDIVIDUALS
o FEATURES

 All features
 Certifications
 Interactive learning
 Live events
 Answers
 Insights reporting

o BLOG
o CONTENT SPONSORSHIP

Search

REST in Practice by Jim Webber, Savas
Parastatidis, Ian Robinson

Chapter 1. The Web As a Platform for Building

Distributed Systems

THE WEB HAS RADICALLY TRANSFORMED THE WAY we produce and

share information. Its international ecosystem of applications and

services allows us to search, aggregate, combine, transform, replicate,

cache, and archive the information that underpins today’s digital

society. Successful despite its chaotic growth, it is the largest, least

https://www.oreilly.com/library/view/rest-in-practice/9781449383312/ch01.html#maincontent
https://www.oreilly.com/member/login/?next=/library/view/rest-in-practice/9781449383312/ch01.html
https://learning.oreilly.com/p/register/
https://www.oreilly.com/online-learning/teams.html
https://www.oreilly.com/online-learning/business.html
https://www.oreilly.com/online-learning/government.html
https://www.oreilly.com/online-learning/academic.html
https://www.oreilly.com/online-learning/individuals.html
https://www.oreilly.com/online-learning/features.html
https://www.oreilly.com/online-learning/features.html
https://www.oreilly.com/online-learning/feature-certification.html
https://www.oreilly.com/online-learning/intro-interactive-learning.html
https://www.oreilly.com/online-learning/live-events.html
https://www.oreilly.com/online-learning/feature-answers.html
https://www.oreilly.com/online-learning/insights-dashboard.html
https://www.oreilly.com/radar/
https://www.oreilly.com/content-marketing-solutions.html
https://learning.oreilly.com/library/view/rest-in-practice/9781449383312/
https://learning.oreilly.com/library/view/rest-in-practice/9781449383312/
https://learning.oreilly.com/library/view/rest-in-practice/9781449383312/
https://learning.oreilly.com/library/view/rest-in-practice/9781449383312/
https://www.oreilly.com/

formal integration project ever attempted—all of this, despite having

barely entered its teenage years.

Today’s Web is in large part the human Web: human users are the

direct consumers of the services offered by the majority of today’s

web applications. Given its success in managing our digital needs at

such phenomenal scale, we’re now starting to ask how we might apply

the Web’s underlying architectural principles to building other kinds

of distributed systems, particularly the kinds of distributed systems

typically implemented by “enterprise application” developers.

Why is the Web such a successful application platform? What are its

guiding principles, and how should we apply them when building

distributed systems? What technologies can and should we use? Why

does the Web model feel familiar, but still different from previous

platforms? Conversely, is the Web always the solution to the

challenges we face as enterprise application developers?

These are the questions we’ll answer in the rest of this book. Our goal

throughout is to describe how to build distributed systems based on

the Web’s architecture. We show how to implement systems that use

the Web’s predominant application protocol, HyperText Transfer

Protocol (HTTP), and which leverage REST’s architectural tenets. We

explain the Web’s fundamental principles in simple terms and discuss

their relevance in developing robust distributed applications. And we

illustrate all this with challenging examples drawn from

representative enterprise scenarios and solutions implemented using

Java and .NET.

The remainder of this chapter takes a first, high-level look at the

Web’s architecture. Here we discuss some key building blocks, touch

briefly on the REpresentational State Transfer (REST) architectural

style, and explain why the Web can readily be used as a platform for

connecting services at global scale. Subsequent chapters dive deeper

into the Web’s principles and discuss the technologies available for

connecting systems in a web-friendly manner.

Architecture of the Web

Tim Berners-Lee designed and built the foundations of the World

Wide Web while a research fellow at CERN in the early 1990s. His

motivation was to create an easy-to-use, distributed, loosely coupled

system for sharing documents. Rather than starting from traditional

distributed application middleware stacks, he opted for a small set of

technologies and architectural principles. His approach made it simple

to implement applications and author content. At the same time, it

enabled the nascent Web to scale and evolve globally. Within a few

years of the Web’s birth, academic and research websites had

emerged all over the Internet. Shortly thereafter, the business world

started establishing a web presence and extracting web-scale profits

from its use. Today the Web is a heady mix of business, research,

government, social, and individual interests.

This diverse constituency makes the Web a chaotic place—the only

consistency being the consistent variety of the interests represented

there; the only unifying factor the seemingly never-ending thread of

connections that lead from gaming to commerce, to dating to

enterprise administration, as we see in Figure 1-1.

Despite the emergent chaos at global scale, the Web is remarkably

simple to understand and easy to use at local scale. As documented by

the World Wide Web Consortium (W3C) in its “Architecture of the

World Wide Web,” the anarchic architecture of today’s Web is the

culmination of thousands of simple, small-scale interactions between

agents and resources that use the founding technologies of HTTP and

the URI.[1]

https://www.oreilly.com/library/view/rest-in-practice/9781449383312/ch01.html#the_web
https://www.oreilly.com/library/view/rest-in-practice/9781449383312/ch01.html#ftn.CHP-1-FNOTE-1

Figure 1-1. The Web

The Web’s architecture, as portrayed in Figure 1-1, shows URIs and

resources playing a leading role, supported by web caches for

scalability. Behind the scenes, service boundaries support isolation

and independent evolution of functionality, thereby encouraging loose

https://www.oreilly.com/library/view/rest-in-practice/9781449383312/ch01.html#the_web

coupling. In the enterprise, the same architectural principles and

technology can be applied.

Traditionally we’ve used middleware to build distributed systems.

Despite the amount of research and development that has gone into

such platforms, none of them has managed to become as pervasive as

the Web is today. Traditional middleware technologies have always

focused on the computer science aspects of distributed systems:

components, type systems, objects, remote procedure calls, and so on.

The Web’s middleware is a set of widely deployed and commoditized

servers. From the obvious—web servers that host resources (and the

data and computation that back them)—to the hidden: proxies,

caches, and content delivery networks, which manage traffic flow.

Together, these elements support the deployment of a planetary-scale

network of systems without resorting to intricate object models or

complex middleware solutions.

This low-ceremony middleware environment has allowed the Web’s

focus to shift to information and document sharing using hypermedia.

While hypermedia itself was not a new idea, its application at Internet

scale took a radical turn with the decision to allow broken links.

Although we’re now nonplussed (though sometimes annoyed) at the

classic “404 Page Not Found” error when we use the Web, this modest

status code set a new and radical direction for distributed computing:

it explicitly acknowledged that we can’t be in control of the whole

system all the time.

Compared to classic distributed systems thinking, the Web’s seeming

ambivalence to dangling pointers is heresy. But it is precisely this shift

toward a web-centric way of building computer systems that is the

focus of this book.

Thinking in Resources

Resources are the fundamental building blocks of web-based systems,

to the extent that the Web is often referred to as being “resource-

oriented.” A resource is anything we expose to the Web, from a

document or video clip to a business process or device. From a

consumer’s point of view, a resource is anything with which that

consumer interacts while progressing toward some goal. Many real-

world resources might at first appear impossible to project onto the

Web. However, their appearance on the Web is a result of our

abstracting out their useful information aspects and presenting these

aspects to the digital world. A flesh-and-blood or bricks-and-mortar

resource becomes a web resource by the simple act of making the

information associated with it accessible on the Web. The generality of

the resource concept makes for a heterogeneous community. Almost

anything can be modeled as a resource and then made available for

manipulation over the network: “Roy’s dissertation,” “the movie Star

Wars,” “the invoice for the books Jane just bought,” “Paul’s poker bot,”

and “the HR process for dealing with new hires” all happily coexist as

resources on the Web.

Resources and Identifiers

To use a resource we need both to be able to identify it on the network

and to have some means of manipulating it. The Web provides the

Uniform Resource Identifier, or URI, for just these purposes. A URI

uniquely identifies a web resource, and at the same time makes it

addressable, or capable of being manipulated using an application

protocol such as HTTP (which is the predominant protocol on the

Web). A resource’s URI distinguishes it from any other resource, and

it’s through its URI that interactions with that resource take place.

The relationship between URIs and resources is many-to-one. A URI

identifies only one resource, but a resource can have more than one

URI. That is, a resource can be identified in more than one way, much

as humans can have multiple email addresses or telephone numbers.

This fits well with our frequent need to identify real-world resources

in more than one way.

There’s no limit on the number of URIs that can refer to a resource,

and it is in fact quite common for a resource to be identified by

numerous URIs, as shown in Figure 1-2. A resource’s URIs may

provide different information about the location of the resource, or

the protocol that can be used to manipulate it. For example, the Google

home page (which is, of course, a resource) can be accessed via

both http://www.google.com and http://google.com URIs.

Figure 1-2. Multiple URIs for a resource

NOTE

Although several URIs can identify the same resource, the Web doesn’t provide any way

to compute whether two different URIs actually refer to the same resource. As

developers, we should never assume that two URIs refer to different resources based

merely on their syntactic differences. Where such comparisons are important, we should

draw on Semantic Web technologies, which offer vocabularies for declaring resource

identity sameness. We will discuss some useful techniques from semantic computing

later in the book.

A URI takes the form <scheme>:<scheme-specific-structure>.

The scheme defines how the rest of the identifier is to be interpreted.

For example, the http part of a URI such

as http://example.org/reports/book.tar tells us that the rest of the URI

must be interpreted according to the HTTP scheme. Under this

https://www.oreilly.com/library/view/rest-in-practice/9781449383312/ch01.html#multiple_uris_for_a_resource
http://www.google.com/
http://google.com/

scheme, the URI identifies a resource at a machine that is identified by

the hostname example.org using DNS lookup. It’s the responsibility of

the machine “listening” at example.org to map the remainder of the

URI, reports/book.tar, to the actual resource. Any authorized software

agent that understands the HTTP scheme can interact with this

resource by following the rules set out by the HTTP specification (RFC

2616).
NOTE

Although we’re mostly familiar with HTTP URIs from browsing the Web, other forms are

supported too. For example, the well-known FTP scheme[2] suggests that a URI such

as ftp://example.org/reports/book.txt should be interpreted in the following

way: example.org is the Domain Name System (DNS) name of the computer that

knows File Transfer Protocol (FTP), reports is interpreted as the argument to

the CWD (Change Working Directory) command, and book.txt is a filename that can be

manipulated through FTP commands, such as RETR for retrieving the identified file from

the FTP server. Similarly, the mailto URI scheme is used to identify email

addresses: mailto:enquiries@restbucks.com.

The mechanism we can use to interact with a resource cannot always be inferred as

easily as the HTTP case suggests; the URN scheme, for example, is not associated with

a particular interaction protocol.

In addition to URI, several other terms are used to refer to web

resource identifiers. Table 1-1 presents a few of the more common

terms, including URN and URL, which are specific forms of URIs,

and IRI, which supports international character sets.

Table 1-1. Terms used on the Web to refer to identifiers

Term Comments

URI (Uniform

Resource Identifier) This is often incorrectly referred to as a “Universal” or “Unique” Resource Identifier; “Uniform” is the correct expansion.

IRI (International

Resource Identifier) This is an update to the definition of URI to allow the use of international characters.

https://www.oreilly.com/library/view/rest-in-practice/9781449383312/ch01.html#ftn.CHP-1-FNOTE-2
mailto:mailto:enquiries@restbucks.com
https://www.oreilly.com/library/view/rest-in-practice/9781449383312/ch01.html#terms_used_on_the_web_to_refer_to_identi

Term Comments

URN (Uniform

Resource Name)

This is a URI with “urn” as the scheme, used to convey unique names in a particular “namespace.” The namespace is defined as part of

the URN’s structure. For example, a book’s ISBN can be captured as a unique name: urn:isbn:0131401602.

URL (Uniform

Resource Locator)

This is a URI used to convey information about the way in which one interacts with the identified resource. For

example, http://google.com identifies a resource on the Web with which communication is possible through HTTP. This term is now

obsolete, since not all URIs need to convey interaction-protocol-specific information. However, the term is part of the Web’s history and

is still widely in use.

Address Many think of resources as having “addresses” on the Web and, as a result, refer to their identifiers as such.

URI VERSUS URL VERSUS URN

URLs and URNs are special forms of URIs. A URI that identifies the mechanism by

which a resource may be accessed is usually referred to as a URL. HTTP URIs are

examples of URLs.

If the URI has urn as its scheme and adheres to the requirements of RFC 2141 and RFC

2611,[3] it is a URN. The goal of URNs is to provide globally unique names for resources.

Resource Representations

The Web is so pervasive that the HTTP URI scheme is today a common

synonym for both identity and address. In the web-based solutions

presented in this book, we’ll use HTTP URIs exclusively to identify

resources, and we’ll often refer to these URIs using the shorthand

term address.

Resources must have at least one identifier to be addressable on the

Web, and each identifier is associated with one or

more representations. A representation is a transformation or a view

of a resource’s state at an instant in time. This view is encoded in one

or more transferable formats, such as XHTML, Atom, XML, JSON, plain

text, comma-separated values, MP3, or JPEG.

For real-world resources, such as goods in a warehouse, we can

distinguish between the actual object and the logical “information”

resource encapsulated by an application or service. It’s the

http://google.com/
https://www.oreilly.com/library/view/rest-in-practice/9781449383312/ch01.html#ftn.CHP-1-FNOTE-3

information resource that is made available to interested parties

through projecting its representations onto the Web. By distinguishing

between the “real” and the “information” resource, we recognize that

objects in the real world can have properties that are not captured in

any of their representations. In this book, we’re primarily interested

in representations of information resources, and where we talk of a

resource or “underlying resource,” it’s the information resource to

which we’re referring.

Access to a resource is always mediated by way of its representations.

That is, web components exchange representations; they never access

the underlying resource directly—the Web does not support pointers!

URIs relate, connect, and associate representations with their

resources on the Web. This separation between a resource and its

representations promotes loose coupling between backend systems

and consuming applications. It also helps with scalability, since a

representation can be cached and replicated.
NOTE

The terms resource representation and resource are often used interchangeably. It is

important to understand, though, that there is a difference, and that there exists a one-

to-many relationship between a resource and its representations.

There are other reasons we wouldn’t want to directly expose the state

of a resource. For example, we may want to serve different views of a

resource’s state depending on which user or application interacts with

it, or we may want to consider different quality-of-service

characteristics for individual consumers. Perhaps a legacy application

written for a mainframe requires access to invoices in plain text, while

a more modern application can cope with an XML or JSON

representation of the same information. Each representation is a view

onto the same underlying resource, with transfer formats negotiated

at runtime through the Web’s content negotiation mechanism.

The Web doesn’t prescribe any particular structure or format

for resource representations; representations can just as well take the

form of a photograph or a video as they can a text file or an XML or

JSON document. Given the range of options for resource

representations, it might seem that the Web is far too chaotic a choice

for integrating computer systems, which traditionally prefer fewer,

more structured formats. However, by carefully choosing a set of

appropriate representation formats, we can constrain the Web’s chaos

so that it supports computer-to-computer interactions.

Resource representation formats serve the needs of service

consumers. This consumer friendliness, however, does not extend to

allowing consumers to control how resources are identified, evolved,

modified, and managed. Instead, services control their resources and

how their states are represented to the outside world. This

encapsulation is one of the key aspects of the Web’s loose coupling.

The success of the Web is linked with the proliferation and wide

acceptance of common representation formats. This ecosystem of

formats (which includes HTML for structured documents, PNG and

JPEG for images, MPEG for videos, and XML and JSON for data),

combined with the large installed base of software capable of

processing them, has been a catalyst in the Web’s success. After all, if

your web browser couldn’t decode JPEG images or HTML documents,

the human Web would have been stunted from the start, despite the

benefits of a widespread transfer protocol such as HTTP.

To illustrate the importance of representation formats, in Figure 1-

3 we’ve modeled the menu of a new coffee store called Restbucks

(which will provide the domain for examples and explanations

throughout this book). We have associated this menu with an HTTP

URI. The publication of the URI surfaces the resource to the Web,

allowing software agents to access the resource’s representation(s).

https://www.oreilly.com/library/view/rest-in-practice/9781449383312/ch01.html#example_of_a_resource_and_its_representa
https://www.oreilly.com/library/view/rest-in-practice/9781449383312/ch01.html#example_of_a_resource_and_its_representa

Figure 1-3. Example of a resource and its representations

In this example, we have decided to make only XHTML and text-only

representations of the resource available. Many more representations

of the same announcement could be served using formats such as PDF,

JPEG, MPEG video, and so on, but we have made a pragmatic decision

to limit our formats to those that are both human- and machine-

friendly.

Typically, resource representations such as those in Figure 1-3 are

meant for human consumption via a web browser. Browsers are the

most common computer agents on the Web today. They understand

protocols such as HTTP and FTP, and they know how to render

formats such as (X)HTML and JPEG for human consumption. Yet, as

we move toward an era of computer systems that span the Web, there

is no reason to think of the web browser as the only important

software agent, or to think that humans will be the only active

consumers of those resources. Take Figure 1-4 as an example. An

order resource is exposed on the Web through a URI. Another

software agent consumes the XML representation of the order as part

of a business-to-business process. Computers interact with one

https://www.oreilly.com/library/view/rest-in-practice/9781449383312/ch01.html#example_of_a_resource_and_its_representa
https://www.oreilly.com/library/view/rest-in-practice/9781449383312/ch01.html#computer-to-computer_communication_using

another over the Web, using HTTP, URIs, and representation formats

to drive the process forward just as readily as humans.

Figure 1-4. Computer-to-computer communication using the Web

Representation Formats and URIs

There is a misconception that different resource representations

should each have their own URI—a notion that has been popularized

by the Rails framework. With this approach, consumers of a resource

terminate URIs with .xml or .json to indicate a preferred format,

requesting http://restbucks.com/order.xml or http://example.org/ord

er.json as they see fit. While such URIs convey intent explicitly, the

Web has a means of negotiating representation formats that is a little

more sophisticated.
NOTE

URIs should be opaque to consumers. Only the issuer of the URI knows how to interpret

and map it to a resource. Using extensions such as .xml, .html, or .json is a historical

convention that stems from the time when web servers simply mapped URIs directly to

files.

In the example in Figure 1-3, we hinted at the availability of two

representation formats: XHTML and plain text. But we didn’t specify

two separate URIs for the representations. This is because there is a

one-to-many association between a URI and its possible resource

representations, as Figure 1-5 illustrates.

http://restbucks.com/order.xml
https://www.oreilly.com/library/view/rest-in-practice/9781449383312/ch01.html#example_of_a_resource_and_its_representa
https://www.oreilly.com/library/view/rest-in-practice/9781449383312/ch01.html#multiple_resource_representations_addres

Figure 1-5. Multiple resource representations addressed by a single URI

Using content negotiation, consumers can negotiate for specific

representation formats from a service. They do so by populating the

HTTP Accept request header with a list of media types they’re prepared

to process. However, it is ultimately up to the owner of a resource to

decide what constitutes a good representation of that resource in the

context of the current interaction, and hence which format should be

returned.

The Art of Communication

It’s time to bring some threads together to see how resources,

representation formats, and URIs help us build systems. On the Web,

resources provide the subjects and objects with which we want to

interact, but how do we act on them? The answer is that we need

verbs, and on the Web these verbs are provided by HTTP methods.[4]

The term uniform interface is used to describe how a (small) number

of verbs with well-defined and widely accepted semantics are

sufficient to meet the requirements of most distributed applications. A

collection of verbs is used for communication between systems.
NOTE

In theory, HTTP is just one of the many interaction protocols that can be used to support

a web of resources and actions, but given its pervasiveness we will assume that HTTP

is the protocol of the Web.

In contemporary distributed systems thinking, it’s a popular idea that

the set of verbs supported by HTTP—GET, POST, PUT, DELETE, OPTIONS, HEAD,

https://www.oreilly.com/library/view/rest-in-practice/9781449383312/ch01.html#ftn.CHP-1-FNOTE-4

TRACE, CONNECT, and PATCH—forms a sufficiently general-purpose protocol to

support a wide range of solutions.
NOTE

In reality, these verbs are used with differing frequencies on the Web, suggesting that an

even smaller subset is usually enough to satisfy the requirements of many distributed

applications.

In addition to verbs, HTTP also defines a collection of response codes,

such as 200 OK, 201 Created, and 404 Not Found, that coordinate the

interactions instigated by the use of the verbs. Taken together, verbs

and status codes provide a general framework for operating on

resources over the network.

Resources, identifiers, and actions are all we need to interact with

resources hosted on the Web. For example, Figure 1-6 shows how the

XML representation of an order might be requested and then

delivered using HTTP, with the overall orchestration of the process

governed by HTTP response codes. We’ll see much more of all this in

later chapters.

Figure 1-6. Using HTTP to “GET” the representation of a resource

From the Web Architecture to the REST Architectural Style

Intrigued by the Web, researchers studied its rapid growth and sought

to understand the reasons for its success. In that spirit, the Web’s

architectural underpinnings were investigated in a seminal work that

supports much of our thinking around contemporary web-based

systems.

https://www.oreilly.com/library/view/rest-in-practice/9781449383312/ch01.html#using_http_to_get_the_representation_of_

As part of his doctoral work, Roy Fielding generalized the Web’s

architectural principles and presented them as a framework of

constraints, or an architectural style. Through this framework, Fielding

described how distributed information systems such as the Web are

built and operated. He described the interplay between resources, and

the role of unique identifiers in such systems. He also talked about

using a limited set of operations with uniform semantics to build a

ubiquitous infrastructure that can support any type of

application.[5] Fielding referred to this architectural style

as REpresentational State Transfer, or REST. REST describes the Web

as a distributed hypermedia application whose linked resources

communicate by exchanging representations of resource state.

Hypermedia

The description of the Web, as captured in W3C’s “Architecture of the

World Wide Web”[6] and other IETF RFC[7] documents, was heavily

influenced by Fielding’s work. The architectural abstractions and

constraints he established led to the introduction of hypermedia as the

engine of application state. The latter has given us a new perspective

on how the Web can be used for tasks other than information storage

and retrieval. His work on REST demonstrated that the Web is an

application platform, with the REST architectural style providing

guiding principles for building distributed applications that scale well,

exhibit loose coupling, and compose functionality across service

boundaries.

The idea is simple, and yet very powerful. A distributed application

makes forward progress by transitioning from one state to another,

just like a state machine. The difference from traditional state

machines, however, is that the possible states and the transitions

between them are not known in advance. Instead, as the application

reaches a new state, the next possible transitions are discovered. It’s

like a treasure hunt.

https://www.oreilly.com/library/view/rest-in-practice/9781449383312/ch01.html#ftn.CHP-1-FNOTE-5
https://www.oreilly.com/library/view/rest-in-practice/9781449383312/ch01.html#ftn.CHP-1-FNOTE-6
https://www.oreilly.com/library/view/rest-in-practice/9781449383312/ch01.html#ftn.CHP-1-FNOTE-7

NOTE

We’re used to this notion on the human Web. In a typical e-commerce solution such as

Amazon.com, the server generates web pages with links on them that corral the user

through the process of selecting goods, purchasing, and arranging delivery.

This is hypermedia at work, but it doesn’t have to be restricted to humans; computers

are just as good at following protocols defined by state machines.

In a hypermedia system, application states are communicated through

representations of uniquely identifiable resources. The identifiers of

the states to which the application can transition are embedded in the

representation of the current state in the form of links. Figure 1-

7 illustrates such a hypermedia state machine.

Figure 1-7. Example of hypermedia as the engine for application state in action

This, in simple terms, is what the famous hypermedia as the engine of

application state or HATEOAS constraint is all about. We see it in

action every day on the Web, when we follow the links to other pages

https://www.oreilly.com/library/view/rest-in-practice/9781449383312/ch01.html#example_of_hypermedia_as_the_engine_for_
https://www.oreilly.com/library/view/rest-in-practice/9781449383312/ch01.html#example_of_hypermedia_as_the_engine_for_

within our browsers. In this book, we show how the same principles

can be used to enable computer-to-computer interactions.

REST and the Rest of This Book

While REST captures the fundamental principles that underlie the

Web, there are still occasions where practice sidesteps theoretical

guidance. Even so, the term REST has become so popular that it is

almost impossible to disassociate it from any approach that uses

HTTP.[8] It’s no surprise that the term REST is treated as a buzzword

these days rather than as an accurate description of the Web’s

blueprints.

The pervasiveness of HTTP sets it aside as being special among all the

Internet protocols. The Web has become a universal “on ramp,”

providing near-ubiquitous connectivity for billions of software agents

across the planet. Correspondingly, the focus of this book is on the

Web as it is used in practice—as a distributed application platform

rather than as a single large hypermedia system. Although we are

highly appreciative of Fielding’s research, and of much subsequent

work in understanding web-scale systems, we’ll use the

term web throughout this book to depict a warts-’n-all view, reserving

the REST terminology to describe solutions that embrace the REST

architectural style. We do this because many of today’s distributed

applications on the Web do not follow the REST architectural tenets,

even though many still refer to these applications as “RESTful.”

The Web As an Application Platform

Though the Web began as a publishing platform, it is now emerging as

a means of connecting distributed applications. The Web as a platform

is the result of its architectural simplicity, the use of a widely

implemented and agreed-upon protocol (HTTP), and the

pervasiveness of common representation formats. The Web is no

longer just a successful large-scale information system, but a platform

for an ecosystem of services.

https://www.oreilly.com/library/view/rest-in-practice/9781449383312/ch01.html#ftn.CHP-1-FNOTE-8

But how can resources, identifiers, document formats, and a protocol

make such an impression? Why, even after the dot-com bubble, are we

still interested in it? What do enterprises—with their innate tendency

toward safe middleware choices from established vendors—see in it?

What is new that changes the way we deliver functionality and

integrate systems inside and outside the enterprise?

As developers, we build solutions on top of platforms that solve or

help with hard distributed computing problems, leaving us free to

work on delivering valuable business functionality. Hopefully, this

book will give you the information you need in order to make an

informed decision on whether the Web fits your problem domain, and

whether it will help or hinder delivering your solution. We happen to

believe that the Web is a sensible solution for the majority of the

distributed computing problems encountered in business computing,

and we hope to convince you of this view in the following chapters.

But for starters, here are a number of reasons we’re such web fans.

Technology Support

An application platform isn’t of much use unless it’s supported by

software libraries and development toolkits. Today, practically all

operating systems and development platforms provide some kind of

support for web technologies (e.g., .NET, Java, Perl, PHP, Python, and

Ruby). Furthermore, the capabilities to process HTTP messages, deal

with URIs, and handle XML or JSON payloads are all widely

implemented in web frameworks such as Ruby on Rails, Java servlets,

PHP Symfony, and ASP.NET MVC. Web servers such as Apache and

Internet Information Server provide runtime hosting for services.

Scalability and Performance

Underpinned by HTTP, the web architecture supports a global

deployment of networked applications. But the massive volume of

blogs, mashups, and news feeds wouldn’t have been possible if it

wasn’t for the way in which the Web and HTTP constrain solutions to

a handful of scalable patterns and practices.

Scalability and performance are quite different concerns. Naively, it

would seem that if latency and bandwidth are critical success factors

for an application, using HTTP is not a good option. We know that

there are messaging protocols with far better performance

characteristics than HTTP’s text-based, synchronous, request-

response behavior. Yet this is an inequitable comparison, since HTTP

is not just another messaging protocol; it’s a protocol that implements

some very specific application semantics. The HTTP verbs (and GET in

particular) support caching, which translates into reduced latency,

enabling massive horizontal scaling for large aggregate throughput of

work.
NOTE

As developers ourselves, we understand how we can believe that asynchronous

message-centric solutions are the most scalable and highest-performing options.

However, existing high-performance and highly available services on the Web are proof

that a synchronous, text-based request-response protocol can provide good

performance and massive scalability when used correctly.

The Web combines a widely shared vision for how to use HTTP efficiently and how to

federate load through a network. It may sound incredible, but through the remainder of

this book, we hope to demonstrate this paradox beyond doubt.

Loose Coupling

The Web is loosely coupled, and correspondingly scalable. The Web

does not try to incorporate in its architecture and technology stack

any of the traditional quality-of-service guarantees, such as data

consistency, transactionality, referential integrity, statefulness, and so

on. This deliberate lack of guarantees means that browsers sometimes

try to retrieve nonexistent pages, mashups can’t always access

information, and business applications can’t always make immediate

progress. Such failures are part of our everyday lives, and the Web is

no different. Just like us, the Web needs to know how to cope with

unintended outcomes or outright failures.

A software agent may be given the URI of a resource on the Web, or it

might retrieve it from the list of hypermedia links inside an HTML

document, or find it after a business-to-business XML message

interaction. But a request to retrieve the representation of that

resource is never guaranteed to be successful. Unlike other

contemporary distributed systems architectures, the Web’s blueprints

do not provide any explicit mechanisms to support information

integrity. For example, if a service on the Web decides that a URI is no

longer going to be associated with a particular resource, there is no

way to notify all those consumers that depend on the old URI–

resource association.

This is an unusual stance, but it does not mean that the Web is

neglectful—far from it. HTTP defines response codes that can be used

by service providers to indicate what has happened. To communicate

that “the resource is now associated with a new URI,” a service can use

the status code 301 Moved Permanently or 303 See Other. The Web always tries to

help move us toward a successful conclusion, but without introducing

tight coupling.

Business Processes

Although business processes can be modeled and exposed through

web resources, HTTP does not provide direct support for such

processes. There is a plethora of work on vocabularies to capture

business processes (e.g., BPEL,[9] WS-Choreography[10]), but none of

them has really embraced the Web’s architectural principles. Yet the

Web—and hypermedia specifically—provides a great platform for

modeling business-to-business interactions.

Instead of reaching for extensive XML dialects to construct

choreographies, the Web allows us to model state machines using

HTTP and hypermedia-friendly formats such as XHTML and Atom.

Once we understand that the states of a process can be modeled as

https://www.oreilly.com/library/view/rest-in-practice/9781449383312/ch01.html#ftn.CHP-1-FNOTE-9
https://www.oreilly.com/library/view/rest-in-practice/9781449383312/ch01.html#ftn.CHP-1-FNOTE-10

resources, it’s simply a matter of describing the transitions between

those resources and allowing clients to choose among them at

runtime.

This isn’t exactly new thinking, since HTML does precisely this for the

human-readable Web through the tag. Although

implementing hypermedia-based solutions for computer-to-computer

systems is a new step for most developers, we’ll show you how to

embrace this model in your systems to support loosely coupled

business processes (i.e., behavior, not just data) over the Web.

Consistency and Uniformity

To the Web, one representation looks very much like another. The

Web doesn’t care if a document is encoded as HTML and carries

weather information for on-screen human consumption, or as an XML

document conveying the same weather data to another application for

further processing. Irrespective of the format, they’re all just resource

representations.

The principle of uniformity and least surprise is a fundamental aspect

of the Web. We see this in the way the number of permissible

operations is constrained to a small set, the members of which have

well-understood semantics. By embracing these constraints, the web

community has developed myriad creative ways to build applications

and infrastructure that support information exchange and application

delivery over the Web.

Caches and proxy servers work precisely because of the widely

understood caching semantics of some of the HTTP verbs—in

particular, GET. The Web’s underlying infrastructure enables reuse of

software tools and development libraries to provide an ecosystem of

middleware services, such as caches, that support performance and

scaling. With plumbing that understands the application model baked

right into the network, the Web allows innovation to flourish at the

edges, with the heavy lifting being carried out in the cloud.

Simplicity, Architectural Pervasiveness, and Reach

This focus on resources, identifiers, HTTP, and formats as the building

blocks of the world’s largest distributed information system might

sound strange to those of us who are used to building distributed

applications around remote method invocations, message-oriented

middleware platforms, interface description languages, and shared

type systems. We have been told that distributed application

development is difficult and requires specialist software and skills.

And yet web proponents constantly talk about simpler approaches.

Traditionally, distributed systems development has focused on

exposing custom behavior in the form of application-specific

interfaces and interaction protocols. Conversely, the Web focuses on a

few well-known network actions (those now-familiar HTTP verbs)

and the application-specific interpretation of resource

representations. URIs, HTTP, and common representation formats

give us reach—straightforward connectivity and ubiquitous support

from mobile phones and embedded devices to entire server farms, all

sharing a common application infrastructure.

Web Friendliness and the Richardson Maturity Model

As with any other technology, the Web will not automatically solve a

business’s application and integration problems. But good design

practices and adoption of good, well-tested, and widely deployed

patterns will take us a long way in our journey to build great web

services.

You’ll often hear the term web friendliness used to characterize good

application of web technologies. For example, a service would be

considered “web-friendly” if it correctly implemented the semantics of

HTTP GET when exposing resources through URIs. Since GET doesn’t

make any service-side state changes that a consumer can be held

accountable for, representations generated as responses to GET may be

cached to increase performance and decrease latency.

Leonard Richardson proposed a classification for services on the Web

that we’ll use in this book to quantify discussions on service

maturity.[11] Leonard’s model promotes three levels of service

maturity based on a service’s support for URIs, HTTP, and hypermedia

(and a fourth level where no support is present). We believe this

taxonomy is important because it allows us to ascribe general

architectural patterns to services in a manner that is easily

understood by service implementers.

The diagram in Figure 1-8 shows the three core technologies with

which Richardson evaluates service maturity. Each layer builds on the

concepts and technologies of the layers below. Generally speaking, the

higher up the stack an application sits, and the more it employs

instances of the technology in each layer, the more mature it is.

Figure 1-8. The levels of maturity according to Richardson’s model

Level Zero Services

The most basic level of service maturity is characterized by those

services that have a single URI, and which use a single HTTP method

(typically POST). For example, most Web Services (WS-*)-based services

use a single URI to identify an endpoint, and HTTP POST to transfer

SOAP-based payloads, effectively ignoring the rest of the HTTP

verbs.[12]

https://www.oreilly.com/library/view/rest-in-practice/9781449383312/ch01.html#ftn.CHP-1-FNOTE-11
https://www.oreilly.com/library/view/rest-in-practice/9781449383312/ch01.html#the_levels_of_maturity_according_to_rich
https://www.oreilly.com/library/view/rest-in-practice/9781449383312/ch01.html#ftn.CHP-1-FNOTE-12

NOTE

We can do wonderful, sophisticated things with WS-*, and it is not our intention to imply

that its level zero status is a criticism. We merely observe that WS-* services do not use

many web features to help achieve their goals.[13]

XML-RPC and Plain Old XML (POX) employ similar methods:

HTTP POST requests with XML payloads transmitted to a single URI

endpoint, with replies delivered in XML as part of the HTTP response.

We will examine the details of these patterns, and show where they

can be effective, in Chapter 3.

Level One Services

The next level of service maturity employs many URIs but only a

single HTTP verb. The key dividing feature between these kinds of

rudimentary services and level zero services is that level one services

expose numerous logical resources, while level zero services tunnel all

interactions through a single (large, complex) resource. In level one

services, however, operations are tunneled by inserting operation

names and parameters into a URI, and then transmitting that URI to a

remote service, typically via HTTP GET.
NOTE

Richardson claims that most services that describe themselves as “RESTful” today are

in reality often level one services. Level one services can be useful, even though they

don’t strictly adhere to RESTful constraints, and so it’s possible to accidentally destroy

data by using a verb (GET) that should not have such side effects.

Level Two Services

Level two services host numerous URI-addressable resources. Such

services support several of the HTTP verbs on each exposed resource.

Included in this level are Create Read Update Delete (CRUD) services,

which we cover in Chapter 4, where the state of resources, typically

representing business entities, can be manipulated over the network.

A prominent example of such a service is Amazon’s S3 storage system.

https://www.oreilly.com/library/view/rest-in-practice/9781449383312/ch01.html#ftn.CHP-1-FNOTE-13
https://www.oreilly.com/library/view/rest-in-practice/9781449383312/ch03.html
https://www.oreilly.com/library/view/rest-in-practice/9781449383312/ch04.html

NOTE

Importantly, level two services use HTTP verbs and status codes to coordinate

interactions. This suggests that they make use of the Web for robustness.

Level Three Services

The most web-aware level of service supports the notion of

hypermedia as the engine of application state. That is, representations

contain URI links to other resources that might be of interest to

consumers. The service leads consumers through a trail of resources,

causing application state transitions as a result.

NOTE

The phrase hypermedia as the engine of application state comes from Fielding’s work on

the REST architectural style. In this book, we’ll tend to use the term hypermedia

constraint instead because it’s shorter and it conveys that using hypermedia to manage

application state is a beneficial aspect of large-scale computing systems.

GET on Board

Can the same principles that drive the Web today be used to connect

systems? Can we follow the same principles driving the human Web

for computer-to-computer scenarios? In the remainder of this book,

we will try to show why it makes sense to do exactly that, but first

we’ll need to introduce our business domain: a simple coffee shop

called Restbucks.

	SHRIMATI INDIRA GANDHI COLLEGE
	Affiliated to Bharathidasan University| Nationally Accredited at ‘A’ Grade(3rd Cycle) by NAAC
	An ISO 9001:2015 Certified Institution
	Thiruchirrappalli
	STUDY MATERIAL
	WEB SERVICES(P22CSE1A)
	DEPARTMENT OF COMPUTER SCIENCE, INFORMATION TECHNOLOGY AND COMPUTER APPLICATIONS
	Prepared by,
	MS.T.R.B.VIDHYA, M.S.I.T.,M.Phil.,M.C.A.,
	ASST. PROF. IN COMPUTER SCIENCE,
	SHRIMATI INDIRA GANDHI COLLEGE,
	TIRUCHIRAPPALLI - 2
	UNIT - IV
	BUILDING REAL WORLD ENTERPRISE WEB SERVICES AND APPLICATIONS
	Any application can be put together in a haphazard manner, but these applications are almost never appropriate for a real world production environment. Real world enterprise applications must be easy to develop, even easier to customize and maintain,...
	SAMPLE SOURCE CODE TO DEVELOP WEB SERVICES
	STEPS NECESSARY FOR CREATING A WEB SERVICE AND CLIENT
	Requirements of a JAX-WS Endpoint
	Coding the Service Endpoint Implementation Class
	Building, Packaging, and Deploying the Service
	To Build, Package, and Deploy the Service Using NetBeans IDE
	To Build, Package, and Deploy the Service Using Maven

	Testing the Methods of a Web Service Endpoint
	To Test the Service without a Client

	A Simple JAX-WS Application Client
	Coding the Application Client
	Running the Application Client
	To Run the Application Client Using NetBeans IDE
	To Run the Application Client Using Maven

	A Simple JAX-WS Web Client
	Coding the Servlet
	Running the Web Client
	To Run the Web Client Using NetBeans IDE
	To Run the Web Client Using Maven

	DEVELOPING WEB SERVICE APPLICATIONS
	How to deploy a java web application on tomcat server
	What is a dynamic web application?
	What is the Tomcat server?
	1. How to deploy a Java web app on Tomcat on Windows #
	1.1 How to install Java on Windows #
	Download and install Java on windows#
	How to set JAVA_HOME in Windows #
	How to install Tomcat on Windows #
	How to deploy Tomcat on Windows #

	How to deploy a Java web app on Tomcat on Mac #
	1.2 How to install Java on Mac #
	Install Java with Homebrew #
	How to install Tomcat on Mac #
	How to deploy Tomcat on Mac #

	How to deploy a Java web app on Tomcat on Linux #
	1.3 How to install Java on Linux #
	Install Java on Linux with apt or yum #
	How to install Tomcat on Linux #
	How to deploy Tomcat on Linux #

	FAQ #
	Q. sudo: apt: command not found
	Q. mkdir: cannot create directory 'tomcat': Permission denied
	Q. Cannot find /home/ec2-user/tomcat/bin/setclasspath.sh This file is needed to run this program

	Java SOAP Webservice using Axis 2 and Tomcat Tutorial with examples
	Axis 2
	Set Axis runtime in Eclipse
	Set Tomcat runtime in Eclipse
	Creating a web service from a plain java class in eclipse
	Invoking the Web Services
	Creating a Console-based Client

	REST in Practice by Jim Webber, Savas Parastatidis, Ian Robinson
	Chapter 1. The Web As a Platform for Building Distributed Systems
	Architecture of the Web
	Thinking in Resources
	Resources and Identifiers
	NOTE
	NOTE (1)
	Resource Representations
	NOTE (2)
	Representation Formats and URIs
	NOTE (3)
	The Art of Communication
	NOTE (4)
	NOTE (5)

	From the Web Architecture to the REST Architectural Style
	Hypermedia
	NOTE
	REST and the Rest of This Book

	The Web As an Application Platform
	Technology Support
	Scalability and Performance
	NOTE
	Loose Coupling
	Business Processes
	Consistency and Uniformity
	Simplicity, Architectural Pervasiveness, and Reach

	Web Friendliness and the Richardson Maturity Model
	Level Zero Services
	NOTE
	Level One Services
	NOTE (1)
	Level Two Services
	NOTE (2)
	Level Three Services
	NOTE (3)

	GET on Board

